534 research outputs found

    Hamiltonian LGT in the complete Fourier analysis basis

    Full text link
    The main problem in the Hamiltonian formulation of Lattice Gauge Theories is the determination of an appropriate basis avoiding the over-completeness arising from Mandelstam relations. We short-cut this problem using Harmonic analysis on Lie-Groups and intertwining operators formalism to explicitly construct a basis of the Hilbert space. Our analysis is based only on properties of the tensor category of Lie-Group representations. The Hamiltonian of such theories is calculated yielding a sparse matrix whose spectrum and eigenstates could be exactly derived as functions of the coupling g2g^2Comment: LATTICE99 (theoretical developments), 3 page

    Space-Time Diffeomorphisms in Noncommutative Gauge Theories

    No full text
    In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007), 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics) where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985), 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987), 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times

    The basis of the physical Hilbert space of lattice gauge theories

    Get PDF
    Non-linear Fourier analysis on compact groups is used to construct an orthonormal basis of the physical (gauge invariant) Hilbert space of Hamiltonian lattice gauge theories. In particular, the matrix elements of the Hamiltonian operator involved are explicitly computed. Finally, some applications and possible developments of the formalism are discussed.Comment: 14 pages, LaTeX (Using amsmath

    An Alternative Canonical Approach to the Ghost Problem in a Complexified Extension of the Pais-Uhlenbeck Oscillator

    No full text
    Our purpose in this paper is to analyze the Pais-Uhlenbeck (PU) oscillator using complex canonical transformations. We show that starting from a Lagrangian approach we obtain a transformation that makes the extended PU oscillator, with unequal frequencies, to be equivalent to two standard second order oscillators which have the original number of degrees of freedom. Such extension is provided by adding a total time derivative to the PU Lagrangian together with a complexification of the original variables further subjected to reality conditions in order to maintain the required number of degrees of freedom. The analysis is accomplished at both the classical and quantum levels. Remarkably, at the quantum level the negative norm states are eliminated, as well as the problems of unbounded below energy and non-unitary time evolution. We illustrate the idea of our approach by eliminating the negative norm states in a complex oscillator. Next, we extend the procedure to the Pais-Uhlenbeck oscillator. The corresponding quantum propagators are calculated using Schwinger's quantum action principle. We also discuss the equal frequency case at the classical level

    Dynamics of Weyl Scale Invariant non-BPS p=3 Branes

    Full text link
    In this paper a Weyl scale invariant p=3p=3 brane scenario is introduced, with the brane embedded in a higher dimensional bulk space with N=1,5DN=1, 5D Super--Weyl symmetry. Its action, which describes its long wave oscillation modes into the ambient superspace and breaks the target symmetry down to the lower dimensional Weyl W(1,3) symmetry, is constructed by the approach of coset method.Comment: 12 pages, modified versio

    The Photon Sector in the Quantum Myers-Pospelov Model: An improved description

    Full text link
    The quantization of the electromagnetic sector of the Myers-Pospelov model coupled to standard fermions is studied. Our main objective is to construct an effective quantum theory that results in a genuine perturbation of QED, such that setting zero the Lorentz invariance violation (LIV) parameters will reproduce it. This is achieved by introducing an additional low energy scale MM, together with a physically motivated prescription to take the QED limit. The prescription is successfully tested in the calculation of the electron self-energy in the one loop approximation. The LIV radiative corrections turn out to be properly scaled by very small factors for any reasonable values of the parameters, no fine-tuning problems are found at this stage and the choice for MM to be of the order of the electroweak symmetry breaking scale is consistent with the stringent bounds for the LIV parameters, in particular with those arising from induced dimension three operators.Comment: 11 pages, no figures, shortened version, new interpretation of the scale M, additional references added, accepted for publication in Phys. Lett.

    The scattering of SH waves by a finite crack with a superposition based diffraction technique

    Get PDF
    The problem of diffraction of cylindrical and plane SH waves by a finite crack is revisited -- We construct an approximate solution by the addition of independent diffracted terms -- We start with the derivation of the fundamental case of a semi-infinite crack obtained as a degenerate case of generalized wedge -- This building block is then used to compute the diffraction of the main incident waves -- The interaction between the opposite edges of the crack is then considered one term at a time until a desired tolerance is reached -- We propose a recipe to determine the number of required interactions as a function of frequency -- The solution derived with the superposition technique can be applied at low and high frequencie

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
    corecore