50 research outputs found
Planning insect surveys in alpine ecosystems
Most biological survey programs rely on multi-species inventories (e.g. birds, amphibians, butterflies, dragonflies). These programs usually rely on multiple visits during pre-defined time windows. The implicit goal of this popular approach is to maximize the observed species richness. Here, we present a novel method to optimize the timing of survey windows using a framework maximizing the detectable species pool. We present a proof of concept using 20 years of entomological records in Switzerland using butterflies, dragonflies, and grasshoppers. The general framework presented can potentially be applied to a wide range of biological survey schemes. It offers a new practical tool for adaptive entomological monitoring under climate change
The contribution of patch topology and demographic parameters to population viability analysis predictions: the case of the European tree frog
Population viability analyses (PVA) are increasingly used in metapopulation conservation plans. Two major types of models are commonly used to assess vulnerability and to rank management options: population-based stochastic simulation models (PSM such as RAMAS or VORTEX) and stochastic patch occupancy models (SPOM). While the first set of models relies on explicit intrapatch dynamics and interpatch dispersal to predict population levels in space and time, the latter is based on spatially explicit metapopulation theory where the probability of patch occupation is predicted given the patch area and isolation (patch topology). We applied both approaches to a European tree frog (Hyla arborea) metapopulation in western Switzerland in order to evaluate the concordances of both models and their applications to conservation. Although some quantitative discrepancies appeared in terms of network occupancy and equilibrium population size, the two approaches were largely concordant regarding the ranking of patch values and sensitivities to parameters, which is encouraging given the differences in the underlying paradigms and input dat
Improving longitudinal habitat connectivity in major river restoration projects through farmland re-allocation
River restoration projects are often accompanied by major land consolidation operations, notably the re-allocation of adjacent farmland, which offers the opportunity to create an extensively-managed buffer zone outside the levees where specific habitat features are installed for endangered terrestrial and semi-aquatic biodiversity. Modern, enrivonmentally-friendly land consolidation operations might thus not only contribute to better integrate the newly restored river into the adjacent landscape, but also to reinstate the longitudinal ecological
connectivity that crudely lacks along channelized rivers. Based on a theoretical re-allocation of agricultural land via land consolidation, we simulated the creation of a longitudinal biodiversity-friendly grassland buffer along a stretch of the Rhone River (SW Switzerland) where a major revitalisation project is under development. We selected a series of focal species depending on a palette of complementary habitat features, and combinations thereof, to be created for reaching these biodiversity targets. Estimations of species-specific habitat patch size requirements as well as dispersal abilities were used to analyse what would be an optimal spatial connectivity for these habitat features. Since such a buffer zone will necessarily stretch along the riverbed, which implies different spatial contraints and consequential planning strategies, we tested two scenarios via a metapopulation model: (i) arranging key habitat features longitudinally or (ii) positioning them in an isotropic context. Simulations showed that differences in metapopulation connectivity between scenarios were negligible at the foreseen
scale. We conclude that land consolidation via targeted farmland re-allocation could be instrumental to restoring ecological connectivity in major river revitalisation projects. We also provide concrete quantitative values for
restoring an optimal ecological buffer along the Rhˆone that will promote locally endangered biodiversity
Landscape genetics of the Alpine newt ( Mesotriton alpestris ) inferred from a strip-based approach
Habitat destruction and fragmentation are known to strongly affect dispersal by altering the quality of the environment between populations. As a consequence, lower landscape connectivity is expected to enhance extinction risks through a decrease in gene flow and the resulting negative effects of genetic drift, accumulation of deleterious mutations and inbreeding depression. Such phenomena are particularly harmful for amphibian species, characterized by disjunct breeding habitats. The dispersal behaviour of amphibians being poorly understood, it is crucial to develop new tools, allowing us to determine the influence of landscape connectivity on the persistence of populations. In this study, we developed a new landscape genetics approach that aims at identifying land-uses affecting genetic differentiation, without a priori assumptions about associated ecological costs. We surveyed genetic variation at seven microsatellite loci for 19 Alpine newt (Mesotriton alpestris) populations in western Switzerland. Using strips of varying widths that define a dispersal corridor between pairs of populations, we were able to identify land-uses that act as dispersal barriers (i.e. urban areas) and corridors (i.e. forests). Our results suggest that habitat destruction and landscape fragmentation might in the near future affect common species such as M. alpestris. In addition, by identifying relevant landscape variables influencing population structure without unrealistic assumptions about dispersal, our method offers a simple and flexible tool of investigation as an alternative to least-cost models and other approache
Density, climate and varying return points: an analysis of long-term population fluctuations in the threatened European tree frog
Experimental research has identified many putative agents of amphibian decline, yet the population-level consequences of these agents remain unknown, owing to lack of information on compensatory density dependence in natural populations. Here, we investigate the relative importance of intrinsic (density-dependent) and extrinsic (climatic) factors impacting the dynamics of a tree frog (Hyla arborea) population over 22years. A combination of log-linear density dependence and rainfall (with a 2-year time lag corresponding to development time) explain 75% of the variance in the rate of increase. Such fluctuations around a variable return point might be responsible for the seemingly erratic demography and disequilibrium dynamics of many amphibian population
Where Land and Water Meet: Making Amphibian Breeding Sites Attractive for Amphibians
The protection of wetlands is a cornerstone in the conservation of pond-breeding amphibians. Because protected wetlands are rarely natural areas, but are often man-made, at least in Europe, it is important that they are well managed to fulfill their intended function. Appropriate management requires knowledge of the ecology of the species, particularly habitat requirements. Here, we combine species monitoring data and habitat mapping data in an analysis where our goal was to describe the factors that determine the occupancy of amphibian species in federally protected amphibian breeding sites. As expected, every species had its own habitat requirements, often a combination of both a terrestrial and aquatic habitat (i.e., landscape complementation). In most species, occupancy was strongly positively affected with the amount of aquatic habitat, but predicted occupancy probabilities were low because the amount of aquatic habitat was low in most sites. The area or proportion of ruderal vegetation also had positive effects on multiple species, while other types of terrestrial habitat (e.g., meadows) led to low occupancy probabilities. The total area of the protected breeding sites was never included in a final model and connectivity was important only for one species (Triturus cristatus). The latter finding implies that the quality of the landscape between breeding sizes is more important than distance per se, while the former implies that the area of some specific habitats within breeding sites is crucial for high occupancies. Thus, increasing the amount of aquatic habitats and likewise terrestrial habitats within protected areas would make them more likely to achieve their conservation objectives. Our study is an example of how the joint analysis of monitoring data and habitat data (based on mapping in the field) can lead to evidence-based suggestions on how to improve conservation practice
The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to
The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria
The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to
The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria
Training future generations to deliver evidence-based conservation and ecosystem management
1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis. 2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice. 3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses. 4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.Peer reviewe