2,906 research outputs found
A Trip Back Home: Resistance to Herbivores of Native and Non-Native Plant Populations of Datura stramonium
When colonizing new ranges, plant populations may benefit from the absence of the checks imposed by the enemies, herbivores, and pathogens that regulated their numbers in their original range. Therefore, rates of plant damage or infestation by natural enemies are expected to be lower in the new range. Exposing both non-native and native plant populations in the native range, where native herbivores are present, can be used to test whether resistance mechanisms have diverged between populations. Datura stramonium is native to the Americas but widely distributed in Spain, where populations show lower herbivore damage than populations in the native range. We established experiments in two localities in the native range (Mexico), exposing two native and two non-native D. stramonium populations to natural herbivores. Plant performance differed between the localities, as did the abundance of the main specialist herbivore, Lema daturaphila. In Teotihuacan, where L. daturaphila is common, native plants had significantly more adult beetles and herbivore damage than non-native plants. The degree of infestation by the specialist seed predator Trichobaris soror differed among populations and between sites, but the native Ticuman population always had the lowest level of infestation. The Ticuman population also had the highest concentration of the alkaloid scopolamine. Scopolamine was negatively related to the number of eggs deposited by L. daturaphila in Teotihuacan. There was among-family variation in herbivore damage (resistance), alkaloid content (scopolamine), and infestation by L. daturaphila and T. soror, indicating genetic variation and potential for further evolution. Although native and non-native D. stramonium populations have not yet diverged in plant resistance/constitutive defense, the differences between ranges (and the two experimental sites) in the type and abundance of herbivores suggest that further research is needed on the role of resource availability and adaptive plasticity, specialized metabolites (induced, constitutive), and the relationship between genealogical origin and plant defense in both ranges
Inter-annual variation in the abundance of specialist herbivores determines plant resistance in Datura stramonium
The expression of plant resistance traits against arthropod herbivores often comes with costs to other essential plant functions such as growth and fitness. These trade-offs are shaped by the allocation of limited resources. However, plants might also possess the capability to allocate resources to both resistance and growth, thereby ensuring their survival when under herbivore attacks. Additionally, the extent of damage caused by herbivores could vary across different years or seasons, subsequently impacting plant performance. In this study, we aimed to investigate how the annual variations in herbivore abundance and damage levels affect plant performance. We generated F-2 progeny through a cross between two populations of the annual herb Datura stramonium (Solanaceae). These populations are known to have differing levels of chemical defense and herbivory. These F-2 plants were cultivated in a common natural environment for two consecutive years (2017 and 2018). Our findings reveal that plants with higher resistance, attained higher seed production but this trend was evident only during 2018. This relationship coincided with a five-fold increase in the abundance of Lema daturaphila (Chrysomelidae) larvae in 2018. Indeed, the plants experienced a 13-fold increase in damage during this second year of study. Furthermore, our results indicated that there was no trade-off between resistance, growth, and fitness in either of the 2 years. In contrast, during 2018, when plants faced stronger herbivore pressure, they allocated all available nutritional resources to enhance both resistance and growth. Our study highlights how the selection for plant resistance is dependent upon the inter-annual variation in herbivore abundance
Evolutionary Ecology of Plant-Arthropod Interactions in Light of the “Omics” Sciences : A Broad Guide
Funding Information: The project is funded by the European Commission as well as the following national/regional bodies: Formas—the Swedish Research Council for Sustainable Development (grant no: 2020–02376), Academy of Finland (grant no. 344726), Research Foundation—Flanders (grant no. FWO ERANET G0H6520N), and Agencia Estatal de Investigación (grant no. PCI2020-120719-2). Publisher Copyright: Copyright © 2022 De-la-Cruz, Batsleer, Bonte, Diller, Hytönen, Muola, Osorio, Posé, Vandegehuchte and Stenberg.Aboveground plant-arthropod interactions are typically complex, involving herbivores, predators, pollinators, and various other guilds that can strongly affect plant fitness, directly or indirectly, and individually, synergistically, or antagonistically. However, little is known about how ongoing natural selection by these interacting guilds shapes the evolution of plants, i.e., how they affect the differential survival and reproduction of genotypes due to differences in phenotypes in an environment. Recent technological advances, including next-generation sequencing, metabolomics, and gene-editing technologies along with traditional experimental approaches (e.g., quantitative genetics experiments), have enabled far more comprehensive exploration of the genes and traits involved in complex ecological interactions. Connecting different levels of biological organization (genes to communities) will enhance the understanding of evolutionary interactions in complex communities, but this requires a multidisciplinary approach. Here, we review traditional and modern methods and concepts, then highlight future avenues for studying the evolution of plant-arthropod interactions (e.g., plant-herbivore-pollinator interactions). Besides promoting a fundamental understanding of plant-associated arthropod communities’ genetic background and evolution, such knowledge can also help address many current global environmental challenges.Peer reviewe
Evolutionary Ecology of Plant-Arthropod Interactions in Light of the “Omics” Sciences: A Broad Guide
Aboveground plant-arthropod interactions are typically complex, involving herbivores, predators, pollinators, and various other guilds that can strongly affect plant fitness, directly or indirectly, and individually, synergistically, or antagonistically. However, little is known about how ongoing natural selection by these interacting guilds shapes the evolution of plants, i.e., how they affect the differential survival and reproduction of genotypes due to differences in phenotypes in an environment. Recent technological advances, including next-generation sequencing, metabolomics, and gene-editing technologies along with traditional experimental approaches (e.g., quantitative genetics experiments), have enabled far more comprehensive exploration of the genes and traits involved in complex ecological interactions. Connecting different levels of biological organization (genes to communities) will enhance the understanding of evolutionary interactions in complex communities, but this requires a multidisciplinary approach. Here, we review traditional and modern methods and concepts, then highlight future avenues for studying the evolution of plant-arthropod interactions (e.g., plant-herbivore-pollinator interactions). Besides promoting a fundamental understanding of plant-associated arthropod communities’ genetic background and evolution, such knowledge can also help address many current global environmental challenges.</p
DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice
In humans, DOCK8 immunodeficiency syndrome is characterized by severe cutaneous viral infections. Thus, CD8 T cell function may be compromised in the absence of DOCK8. In this study, by analyzing mutant mice and humans, we demonstrate a critical, intrinsic role for DOCK8 in peripheral CD8 T cell survival and function. DOCK8 mutation selectively diminished the abundance of circulating naive CD8 T cells in both species, and in DOCK8-deficient humans, most CD8 T cells displayed an exhausted CD45RA+CCR7? phenotype. Analyses in mice revealed the CD8 T cell abnormalities to be cell autonomous and primarily postthymic. DOCK8 mutant naive CD8 T cells had a shorter lifespan and, upon encounter with antigen on dendritic cells, exhibited poor LFA-1 synaptic polarization and a delay in the first cell division. Although DOCK8 mutant T cells underwent near-normal primary clonal expansion after primary infection with recombinant influenza virus in vivo, they showed greatly reduced memory cell persistence and recall. These findings highlight a key role for DOCK8 in the survival and function of human and mouse CD8 T cells
DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice
As shown by analysis of mice and humans bearing DOCK8-inactivating mutations, DOCK8 plays a cell-autonomous role in survival of naive CD8 T cells, LFA-1 polarization toward the immune synapse, and CD8 T cell memory and recall responses following viral infection
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE
In this small note we are concerned with the solution of Forward-Backward
Stochastic Differential Equations (FBSDE) with drivers that grow quadratically
in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem
is a comparison result that allows comparing componentwise the signs of the
control processes of two different qgFBSDE. As a byproduct one obtains
conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio
Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at , 2.76 and 7 TeV
Measurements of the sphericity of primary charged particles in minimum bias
proton--proton collisions at , 2.76 and 7 TeV with the ALICE
detector at the LHC are presented. The observable is linearized to be collinear
safe and is measured in the plane perpendicular to the beam direction using
primary charged tracks with GeV/c in . The
mean sphericity as a function of the charged particle multiplicity at
mid-rapidity () is reported for events with different
scales ("soft" and "hard") defined by the transverse momentum of the leading
particle. In addition, the mean charged particle transverse momentum versus
multiplicity is presented for the different event classes, and the sphericity
distributions in bins of multiplicity are presented. The data are compared with
calculations of standard Monte Carlo event generators. The transverse
sphericity is found to grow with multiplicity at all collision energies, with a
steeper rise at low , whereas the event generators show the
opposite tendency. The combined study of the sphericity and the mean with multiplicity indicates that most of the tested event generators
produce events with higher multiplicity by generating more back-to-back jets
resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with
tune PERUGIA-2011 exhibits a noticeable improvement in describing the data,
compared to the other tested generators.Comment: 21 pages, 9 captioned figures, 3 tables, authors from page 16,
published version, figures from
http://aliceinfo.cern.ch/ArtSubmission/node/308
A collaboratively derived environmental research agenda for Galapagos
Galápagos is one of the most pristine archipelagos in the world and its conservation relies upon research and sensible management. In recent decades both the interest in, and the needs of, the islands have increased, yet the funds and capacity for necessary research have remained limited. It has become, therefore, increasingly important to identify areas of priority research to assist decision-making in Galápagos conservation.
This study identified 50 questions considered priorities for future research and management. The exercise involved the collaboration of policy makers, practitioners and researchers from more than 30 different organisations. Initially, 360 people were consulted to generate 781 questions. An established process of preworkshop voting and three rounds to reduce and reword the questions, followed by a two-day workshop, was used to produce the final 50 questions. The most common issues raised by this list of questions were human population growth, climate change and the impact of invasive alien species. These results have already been used by a range of organisations and politicians and are expected to provide the basis for future research on the islands so that its sustainability may be enhanced.
</jats:p
- …