37 research outputs found

    Intelligent image-based in situ single-cell isolation

    Get PDF
    Quantifying heterogeneities within cell populations is important for many fields including cancer research and neurobiology; however, techniques to isolate individual cells are limited. Here, we describe a high-throughput, non-disruptive, and cost-effective isolation method that is capable of capturing individually targeted cells using widely available techniques. Using high-resolution microscopy, laser microcapture microscopy, image analysis, and machine learning, our technology enables scalable molecular genetic analysis of single cells, targetable by morphology or location within the sample.Peer reviewe

    The Magnetoelastic Distortion of Multiferroic BiFeO3_3 in the Canted Antiferromagnetic State

    Full text link
    Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO3_3 in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortion of the canted antiferromagnetic state is induced by the single-ion magnetoelastic coupling between the lattice and the two nearly anti-parallel spins. The revised spin model for BiFeO3_3 contains two new single-ion anisotropy terms that violate rhombohedral symmetry and depend on the direction of the magnetic field.Comment: 28 pages (main & supplementary), 2 figures (main article), 15 figures (supplementary material

    CD62L (L-selectin) shedding for assessment of perioperative immune sensitivity in patients undergoing cardiac surgery with cardiopulmonary bypass

    Get PDF
    OBJECTIVE: To investigate the suitability of blood granulocyte and monocyte sensitivity, as measured by the quantity of different agonists required to induce CD62L shedding, for assessment of perioperative immune changes in patients undergoing cardiac surgery with cardiopulmonary bypass. METHODS: Patients scheduled for aortocoronary bypass grafting or for valve surgery were included in this prospective observational study. Blood samples were drawn before anesthesia induction, directly after surgery and 48 hours after anesthesia induction. We determined the concentration of two different inflammatory stimuli--lipoteichoic acid (LTA) and tumor necrosis factor alpha (TNF)--required to induce shedding of 50% of surface CD62L from blood granulocytes and monocytes. In parallel monocyte surface human leukocyte antigen (HLA)-DR, and plasma interleukin (IL)-8, soluble (s)CD62L, soluble (s)Toll-like receptor (TLR)-2 and ADAM17 quantification were used to illustrate perioperative immunomodulation. RESULTS: 25 patients were enrolled. Blood granulocytes and monocytes showed decreased sensitivity to the TLR 2/6 agonist Staphylococcus aureus LTA immediately after surgery (p = 0.001 and p = 0.004 respectively). In contrast, granulocytes (p = 0.01), but not monocytes (p = 0.057) displayed a decreased postoperative sensitivity to TNF. We confirmed the presence of a systemic inflammatory response and a decreased immune sensitivity in the post-surgical period by measuring significant increases in the perioperative plasma concentration of IL-8 (p </= 0.001) and sTLR (p = 0.004), and decreases in monocyte HLA-DR (p<0.001), plasma sCD62L (p </= 0.001). In contrast, ADAM17 plasma levels did not show significant differences over the observation period (p = 0.401). CONCLUSIONS: Monitoring granulocyte and monocyte sensitivity using the "CD62L shedding assay" in the perioperative period in cardiac surgical patients treated with the use of cardiopulmonary bypass reveals common changes in sensitivity to TLR2/6 ligands and to TNF stimulus. Further long-term follow-up studies will address the predictive value of these observations for clinical purposes

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    THÈSE POUR OBTENIR LE GRADE DE DOCTEUR Sous la direction de Dr. Mihai Barboiu Devant le jury composĂ© de SupramolĂ©culaire artificial water channels: from molecular design to membrane materialscette thĂšse couvre une Ă©tude fondamentale sur des canaux artificiels d’eau et sur des matĂ©riaux membranaires incorporant ces canaux

    No full text
    The work described in this thesis covers an in depth fundamental study of artificial water channels and of membrane materials incorporating these channels. Structured in four chapters, the thesis begins with a presentation of the state of the art in the field of biomimetic systems and membranes for water transport. The center of the described research work is the family of highly efficient and selective biological water transporter proteins, the Aquaporins. The second chapter presents the description of imidazole-quartet supramolecular artificial water channels. Structural and functional similarities with Aquaporins are discussed and based on several experimental methods. Single-solid state structures present very similar organization of confined water wires as found in their biological counterparts. Functional mimicry of water transport has been proved through stopped flow experiments in vesicular systems. Further characterization concerning water translocation mechanism and confined organization in lipid environments have been obtained through molecular dynamic simulations, while physical evidence of dipolar oriented water in lipid embedded channels has been provided by sum frequency generation experiments. The third chapter presents novel artificial water channels. New diol, tetrazacrown and tryarilamine based compounds have been described, with a main focus on design, synthesis, self-assembly and water transport properties. The last chapter makes the transition from the molecular systems to macroscopic membrane materials incorporating artificial water channels. Two different approaches have been described : thin film nanocomposite membranes based on the incorporation of imidazole-quartet nanoparticles in polyamide polymers and chemically grafted regenerated cellulose membrane through the use of custom monomers for the obtaining of artificial water channels. The membranes have been characterized through various imaging and analytical methods and their performances have been tested in reverse and forward osmosis experiments. The thesis is concluded with a general conclusion part, including perspectives for future developments.Le travail dĂ©crit dans cette thĂšse couvre une Ă©tude fondamentale sur des canaux artificiels d’eau et sur des matĂ©riaux membranaires incorporant ces canaux. StructurĂ© en quatre chapitres, la thĂšse commence par une prĂ©sentation de l’état de l’art sur les systĂšmes biomimĂ©tiques de transport d’eau et des membranes biomimĂ©tiques. Au centre de tous ces travaux de recherche sont les protĂ©ines biologiques hautement efficaces et sĂ©lectives, les Aquaporines. Le deuxiĂšme chapitre prĂ©sente les canaux artificiels d’eau Ă  base d’imidazole-quartet. Les similitudes structurelles et fonctionnelles avec les Aquaporines sont discutĂ©es et caractĂ©risĂ©es par plusieurs mĂ©thodes expĂ©rimentales. Les structures Ă  l’état solide obtenues Ă  partir de monocristaux prĂ©sentent une organisation trĂšs similaire des I-quartets avec leurs homologues biologiques. Le biomimĂ©tisme fonctionnel du transport de l’eau a Ă©tĂ© dĂ©montrĂ© par des expĂ©riences cinĂ©tiques de transport Ă  travers des systĂšmes vĂ©siculaires. Le mĂ©canisme de translocation de l’eau et l’organisation confinĂ©e dans des environnements lipidiques a Ă©tĂ© confirmĂ© par des simulations dynamiques molĂ©culaires, tandis que la preuve physique de l’eau orientĂ©e dipolaire dans les canaux intĂ©grĂ©s aux lipides a Ă©tĂ© fournie par des expĂ©riences de spectroscopie IR polarisĂ©e. Le troisiĂšme chapitre prĂ©sente de nouveaux canaux d’eau artificiels en utilisant une stratĂ©gie d’auto-assemblage. De nouveaux composĂ©s Ă  base de diol, de tĂ©trazacrown et de tryarilamine capables de transporter l’eau sont dĂ©crits. Le dernier chapitre dĂ©crits le passage du niveau molĂ©culaire aux matĂ©riaux membranaires macroscopiques incorporant des canaux d’eau artificiels. Deux configuration membranaires diffĂ©rentes ont Ă©tĂ© dĂ©crites : des membranes en couche mince par l’incorporation de nanoparticules Ă  base d’imidazole dans des polymĂšres de polyamide et des membranes de la cellulose rĂ©gĂ©nĂ©rĂ©e chimiquement greffĂ©e par des monomĂšres de canaux d’eau artificiels. Les membranes ont Ă©tĂ© caractĂ©risĂ©es par diverses mĂ©thodes d’imagerie et d’analyse et leurs performances ont Ă©tĂ© testĂ©es dans des expĂ©riences d’osmose inverse et de filtration d’osmose directe. La thĂšse est conclue avec une partie de conclusion gĂ©nĂ©rale, comprenant des perspectives pour les dĂ©veloppements futurs

    Canaux d'eau artificielle supramoléculaires : de la conception moléculaire aux matériaux de membrane

    No full text
    Le travail dĂ©crit dans cette thĂšse couvre une Ă©tude fondamentale sur des canaux artificiels d'eau et sur des matĂ©riaux membranaires incorporant ces canaux. StructurĂ© en quatre chapitres, la thĂšse commence par une prĂ©sentation de l'Ă©tat de l’art sur les systĂšmes biomimĂ©tiques de transport d'eau et des membranes biomimĂ©tiques. Au centre de tous ces travaux de recherche sont les protĂ©ines biologiques hautement efficaces et sĂ©lectives, les Aquaporines. Le deuxiĂšme chapitre prĂ©sente les canaux artificiels d'eau Ă  base d'imidazole-quartet. Les similitudes structurelles et fonctionnelles avec les Aquaporines sont discutĂ©es et caractĂ©risĂ©es par plusieurs mĂ©thodes expĂ©rimentales. Les structures Ă  l'Ă©tat solide obtenues Ă  partir de monocristaux prĂ©sentent une organisation trĂšs similaire des I-quartets avec leurs homologues biologiques. Le biomimĂ©tisme fonctionnel du transport de l'eau a Ă©tĂ© dĂ©montrĂ© par des expĂ©riences cinĂ©tiques de transport Ă  travers des systĂšmes vĂ©siculaires. Le mĂ©canisme de translocation de l'eau et l'organisation confinĂ©e dans des environnements lipidiques a Ă©tĂ© confirmĂ© par des simulations dynamiques molĂ©culaires, tandis que la preuve physique de l'eau orientĂ©e dipolaire dans les canaux intĂ©grĂ©s aux lipides a Ă©tĂ© fournie par des expĂ©riences de spectroscopie IR polarisĂ©e. Le troisiĂšme chapitre prĂ©sente de nouveaux canaux d'eau artificiels en utilisant une stratĂ©gie d'auto-assemblage. De nouveaux composĂ©s Ă  base de diol, de tĂ©trazacrown et de tryarilamine capables de transporter l'eau sont dĂ©crits. Le dernier chapitre dĂ©crits le passage du niveau molĂ©culaire aux matĂ©riaux membranaires macroscopiques incorporant des canaux d'eau artificiels. Deux configuration membranaires diffĂ©rentes ont Ă©tĂ© dĂ©crites: des membranes en couche mince par l'incorporation de nanoparticules Ă  base d'imidazole dans des polymĂšres de polyamide et des membranes de la cellulose rĂ©gĂ©nĂ©rĂ©e chimiquement greffĂ©e par des monomĂšres de canaux d'eau artificiels. Les membranes ont Ă©tĂ© caractĂ©risĂ©es par diverses mĂ©thodes d'imagerie et d'analyse et leurs performances ont Ă©tĂ© testĂ©es dans des expĂ©riences d'osmose inverse et de filtration d'osmose directe. La thĂšse est conclue avec une partie de conclusion gĂ©nĂ©rale, comprenant des perspectives pour les dĂ©veloppements futurs.The work described in this thesis covers an in depth fundamental study of artificial water channels and of membrane materials incorporating these channels. Structured in four chapters, the thesis begins with a presentation of the state of the art in the field of biomimetic systems and membranes for water transport. The center of the described research work is the family of highly efficient and selective biological water transporter proteins, the Aquaporins. The second chapter presents the description of imidazole-quartet supramolecular artificial water channels. Structural and functional similarities with Aquaporins are discussed and based on several experimental methods. Single-solid state structures present very similar organization of confined water wires as found in their biological counterparts. Functional mimicry of water transport has been proved through stopped flow experiments in vesicular systems. Further characterization concerning water translocation mechanism and confined organization in lipid environments have been obtained through molecular dynamic simulations, while physical evidence of dipolar oriented water in lipid embedded channels has been provided by sum frequency generation experiments. The third chapter presents novel artificial water channels. New diol, tetrazacrown and tryarilamine based compounds have been described, with a main focus on design, synthesis, self-assembly and water transport properties. The last chapter makes the transition from the molecular systems to macroscopic membrane materials incorporating artificial water channels. Two different approaches have been described: thin film nanocomposite membranes based on the incorporation of imidazole-quartet nanoparticles in polyamide polymers and chemically grafted regenerated cellulose membrane through the use of custom monomers for the obtaining of artificial water channels. The membranes have been characterized through various imaging and analytical methods and their performances have been tested in reverse and forward osmosis experiments. The thesis is concluded with a general conclusion part, including perspectives for future developments
    corecore