816 research outputs found

    Modern state of use of solar desalination

    Get PDF
    Water is the most necessary resource for mankind, animals and plants. Although 71% of the Earth’s surface is covered by water, 97% of it is salt water, that is, water that is not suitable for consumption. Also, continuous pollution of surface and underground water is increasing the shortage of drinking water. In solving the above problems, desalination of salt water is an important way of increasing drinking water resources. However, the high energy consumption, increased greenhouse gas emissions, large amounts of wastewater and the high cost of fresh water in desalination limit the widespread adoption of desalination technology in the industry. To solve these limitations, solar energy, which is one of the renewable energy sources, is environmentally friendly, ubiquitous, convenient to use, safe and sustainable. Currently, several constructions of SD are proposed, the main part of which is a pool construction. This research paper presents the results of comparison of the constructional structures of one- and two-basin SD, their heat-technical parameters, device productivity and economic indicators

    CFD model of acceleration of thermal-hydrodynamic processes in solar air collectors

    Get PDF
    Recent studies on increasing the thermal-hydrodynamic efficiency of solar air collectors have been carried out on the installation of barriers of various shapes on the surface of the absorber, and this method ensures a significant increase in the energy efficiency of the collector. The transfer of the air flow washing the surface of the absorber from a laminar flow state to an accelerated lumped air flow is carried out by installing obstacles. Installation of barriers is the main factor in increasing the heat transfer in solar air collectors and prolongs the time of air flow in the collector. The barrier solar air collector has a high local heat transfer coefficient, and the Nusselt number value is up to 3.5 times higher than that of the flat plate solar air collector. Also, this article presents the results of CFD modeling of the air flow in the solar air collector, the results of which can be used in the theoretical research of the solar air collector

    Mathematical Modeling of the Combined Heat Supply System of a Solar House

    Get PDF
    Today, increasing energy efficiency in residential heating systems, saving fuel and energy resources, and improving the efficiency of using devices based on renewable energy sources is an urgent issue. The purpose of the article is to develop a mathematical model of the heat balance and conduct a theoretical study of one-story rural houses based on the use of solar energy in a non-stationary mode. To achieve this goal, an experimental one-story solar house with autonomous heat supply was built. The heat supply of the experimental solar house mainly uses solar energy, and when the heat supply load exceeds this load, the traditional boiler device is used. The power supply of the experimental solar house is provided by a solar panel (photovoltaic converter). A heat balance scheme for a solar house with autonomous heat supply and an electrothermal scheme of a physical model are proposed. Based on the proposed schemes, a mathematical model of heat balance and a calculation algorithm based on the heat balance equation of the dynamic state of the heat supply system of a one-story experimental solar house in a non-stationary mode have been developed. On the basis of mathematical modeling, the influence of the heat capacity of the wall structure on the temperature regime of the building was studied. On the basis of the MATLAB-Simulink program, the main temperature characteristics were built, on which the change in the temperature of the internal air of the building was analyzed depending on the ambient temperature. On the basis of the program, a modular scheme of the dynamic model was built. Based on the modular scheme, the results of the experiment on changing the air inside the solar house and the outdoor temperature are presented in the form of a graph. The mathematical model of the thermal balance of the building in dynamic mode and the obtained calculation results are recommended for use in the development of energy-efficient solar houses

    Математическое моделирование комбинированной системы теплоснабжения солнечного дома)

    Get PDF
    Today, increasing energy efficiency in residential heating systems, saving fuel and energy resources, and improving the efficiency of using devices based on renewable energy sources is an urgent issue. The purpose of the article is to develop a mathematical model of the heat balance and conduct a theoretical study of one-story rural houses based on the use of solar energy in a non-stationary mode. To achieve this goal, an experimental one-story solar house with autonomous heat supply was built. The heat supply of the experimental solar house mainly uses solar energy, and when the heat supply load exceeds this load, the traditional boiler device is used. The power supply of the experimental solar house is provided by a solar panel (photovoltaic converter). A heat balance scheme for a solar house with autonomous heat supply and an electrothermal scheme of a physical model are proposed. Based on the proposed schemes, a mathematical model of heat balance and a calculation algorithm based on the heat balance equation of the dynamic state of the heat supply system of a one-story experimental solar house in a non-stationary mode have been developed. On the basis of mathematical modeling, the influence of the heat capacity of the wall structure on the temperature regime of the building was studied. On the basis of the MATLAB-Simulink program, the main temperature characteristics were built, on which the change in the temperature of the internal air of the building was analyzed depending on the ambient temperature. On the basis of the program, a modular scheme of the dynamic model was built. Based on the modular scheme, the results of the experiment on changing the air inside the solar house and the outdoor temperature are presented in the form of a graph. The mathematical model of the thermal balance of the building in dynamic mode and the obtained calculation results are recommended for use in the development of energy-efficient solar houses.Вопросы экономии топливно-энергетических ресурсов, повышения эффективности систем теплоснабжения жилых помещений, а также использования устройств на основе возобновляемых источников энергии на сегодняшний день имеют особую актуальность. Цель статьи – разработать математическую модель теплового баланса и провести теоретическое исследование одноэтажных сельских домов, использующих солнечную энергию в нестационарном режиме. Для ее реализации построен экспериментальный одноэтажный солнечный дом с автономным теплоснабжением на основе преимущественно солнечной энергии. В случаях, если нагрузка на теплоснабжение превышает солнечную нагрузку, применяется традиционное котельное устройство. Электроснабжение экспериментального дома обеспечивается солнечной панелью (фотоэлектрическим преобразователем). Предложены схема теплового баланса солнечного дома с автономным теплоснабжением и электротепловая схема физической модели. На их основе разработаны математическая модель и алгоритм расчета, базирующийся на уравнении теплового баланса динамического состояния системы теплоснабжения экспериментального дома в нестационарном режиме. Исследовано влияние теплоемкости стеновой конструкции на температурный режим здания. В среде моделирования MATLAB-Simulink построены основные температурные характеристики, на которых проанализировано изменение температуры внутреннего воздуха здания в зависимости от температуры окружающей среды. Построена модульная схема динамической модели, результаты эксперимента по изменению воздуха внутри солнечного дома и температуры наружного воздуха представлены в виде графика. Математическая модель теплового баланса здания в динамическом режиме и результаты расчетов могут использоваться при разработке энергоэффективных солнечных домов

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
    corecore