112 research outputs found

    Business strategy and innovative models in the fashion industry: clothing leasing as a driver of sustainability

    Get PDF
    The fashion industry is ranked as the second largest cause of environmental pollution. In this context, circular business models emerge as key tools to address the negative impacts of the textile industry. The aim of this work is to identify alternatives to the currently dominant model followed by fast fashion, through the proposal of a circular business model based on leasing. The methodology of the work, based on the take-make-waste model, is based on a multicriteria analysis with the local-global approach using academic experts, and fashion and retail experts. The results show that the criteria of the access-based model and best-care are the most relevant. The highest sustainability value is assigned to leasing, which guarantees ethical conditions for workers, followed by the use of raw materials (recycled or bio-based materials) and the reduction of overproduction. The implications of this work determine that leasing can support circular fashion and that the social component of sustainability should be given more attention in production models. Strategic partnerships and sharing platforms are tools that can support a real transition of the fashion industry towards sustainability

    A comparison of environmental and energetic performance of European countries: A sustainability index

    Get PDF
    Recently, European countries agreed on a new 2030-pact establishing challenging levels for a set of climate and energy indexes in order to achieve a more competitive, safe and sustainable energy system. In order to evaluate current sustainability performances of European countries from the environmental and energetic perspectives, this research proposes a Multi-Criteria Decision Analysis (MCDA) that, starting from both Eurostat data and the Analytic Hierarchy Process (AHP), allows a direct comparison of nations. To this aim, multiple indexes are taken into account (e.g. Greenhouse gas (GHG) emissions, Government expenditures for environmental protection, Recycled and reused waste from electric and electronic equipments (WEEEs), Recycled and reused waste from end-of-life vehicles (ELVs), Recycled materials from Municipal Solid Wastes (MSWs), Share of renewable energy (RE) in electricity, Share of RE in transport, Share of RE in heating and cooling and Primary energy consumption). This assessment model provides a sustainability value for each European country and the related ranking with the European average. Results show as, even nowadays, twelve out of twenty-eight European countries have a value greater than the European average in 2013. Top four nations (Sweden, Denmark, Finland and Austria) have high indexes of sustainability and Sweden is the best country from both the environmental and energetic perspectives

    A profitability assessment of European recycling processes treating printed circuit boards from waste electrical and electronic equipments

    Get PDF
    The management of waste electrical and electronic equipment (WEEE) is a well-stressed topic in the scientific literature. However, (i) the amount of cash flows potentially reachable, (ii) the future profitability trends and (iii) the reference mix of treated volumes guaranteeing a certain profitability level are not so clear, and related data are unrecoverable. The purpose of the paper is to fill in this gap by identifying the presence of profitability within the recovery process of waste printed circuit boards (WPCBs) embedded in WEEE. Net present value (NPV) and discounted payback time (DPBT) are used as reference indexes for the evaluation of investments. In addition, a sensitivity analysis of critical variables (plant saturation level, materials content, materials market prices, materials final purity level and WPCBs purchasing and opportunity costs) demonstrates the robustness of the results. Furthermore, the calculation of the national NPV for each of the twenty-eight European nations (in function of both WPCB mix and generated volumes) and the matching of predicted WPCB volumes (within the 2015–2030 period) and NPV quantify potential advantages. The break even point of gold allowing some profits from selected recovery plants goes from 73 to 93 ppm per WPCB ton, for mobile and field plants, respectively. Finally, the overall European values go from 2404 million € (mobile plant) to 4795 million € (field plant) in 2013, with Germany and United Kingdom as reference nations

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Oligodendrocytes Do Not Export NAA-Derived Aspartate In Vitro.

    Get PDF
    Oligodendroglial cells are known to de-acetylate the N-acetylaspartate (NAA) synthesized and released by neurons and use it for lipid synthesis. However, the role of NAA regarding their intermediary metabolism remains poorly understood. Two hypotheses were proposed regarding the fate of aspartate after being released by de-acetylation: (1) aspartate is metabolized in the mitochondria of oligodendrocyte lineage cells; (2) aspartate is released to the medium. We report here that aspartoacylase mRNA expression increases when primary rat oligodendrocyte progenitor cells (OPCs) differentiate into mature cells in culture. Moreover, characterising metabolic functions of acetyl coenzyme A and aspartate from NAA catabolism in mature oligodendrocyte cultures after 5 days using isotope-labelled glucose after 5-days of differentiation we found evidence of extensive NAA metabolism. Incubation with [1,6-13C]glucose followed by gas chromatography-mass spectrometry and high performance liquid chromatography analyses of cell extracts and media in the presence and absence of NAA established that the acetate moiety produced by hydrolysis of NAA does not enter mitochondrial metabolism in the form of acetyl coenzyme A. We also resolved the controversy concerning the possible release of aspartate to the medium: aspartate is not released to the medium by oligodendrocytes in amounts detectable by our methods. Therefore we propose that: aspartate released from NAA joins the cytosolic aspartate pool rapidly and takes part in the malate-aspartate shuttle, which transports reducing equivalents from glycolysis into the mitochondria for ATP production and enters the tricarboxylic acid cycle at a slow rate.This work was supported by grants from the UK Multiple Sclerosis Society and from Qatar Foundation. The work was further supported by core funding from the Wellcome Trust and MRC to the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute. The authors acknowledge the excellent technical support in GC-MS and HPLC analysis from Lars Evje (NTNU, Norway).This is the final version of the article. It first appeared from Springer at http://dx.doi.org/10.1007/s11064-016-1985-y

    Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00348-015-2107-3The potential benefits of active flow control are no more debated. Among many others applications, flow control provides an effective mean for manipulating turbulent separated flows. Here, a nonthermal surface plasma discharge (dielectric barrier discharge) is installed at the step corner of a backward-facing step (U0 = 15 m/s, Reh = 30,000, Re¿ = 1650). Wall pressure sensors are used to estimate the reattaching location downstream of the step (objective function #1) and also to measure the wall pressure fluctuation coefficients (objective function #2). An autonomous multi-variable optimization by genetic algorithm is implemented in an experiment for optimizing simultaneously the voltage amplitude, the burst frequency and the duty cycle of the high-voltage signal producing the surface plasma discharge. The single-objective optimization problems concern alternatively the minimization of the objective function #1 and the maximization of the objective function #2. The present paper demonstrates that when coupled with the plasma actuator and the wall pressure sensors, the genetic algorithm can find the optimum forcing conditions in only a few generations. At the end of the iterative search process, the minimum reattaching position is achieved by forcing the flow at the shear layer mode where a large spreading rate is obtained by increasing the periodicity of the vortex street and by enhancing the vortex pairing process. The objective function #2 is maximized for an actuation at half the shear layer mode. In this specific forcing mode, time-resolved PIV shows that the vortex pairing is reduced and that the strong fluctuations of the wall pressure coefficients result from the periodic passages of flow structures whose size corresponds to the height of the step model.Peer ReviewedPostprint (author's final draft

    Targeted antiangiogenic agents in combination with cytotoxic chemotherapy in preclinical and clinical studies in sarcoma

    Get PDF
    Sarcomas are a heterogeneous group of mesenchymal malignancies. In recent years, studies have demonstrated that inhibition of angiogenic pathways or disruption of established vasculature can attenuate the growth of sarcomas. However, when used as monotherapy in the clinical setting, these targeted antiangiogenic agents have only provided modest survival benefits in some sarcoma subtypes, and have not been efficacious in others. Preclinical and early clinical data suggest that the addition of conventional chemotherapy to antiangiogenic agents may lead to more effective therapies for patients with these tumors. In the current review, the authors summarize the available evidence and possible mechanisms supporting this approach

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways
    corecore