613 research outputs found

    Balanced Scorecard Perspectives on Financial Sustainability of a Small Private University in Canada

    Get PDF
    Private higher education institutions have been a focus of scholars because of their increasing closures due to the lack of financial sustainability. Researchers have demonstrated these closures limit society’s choices in higher education and have yet been able to explore the perceptions of leaders of a small private university in Canada regarding their university’s financial sustainability. The purpose of this study was to explore these perceptions using Kaplan and Norton’s balanced scorecard conceptual framework to analyze its four perspectives, particularly its financial perspective. Using the qualitative, descriptive, single case study, data from fourteen leaders were collected from focused interviews. The results of these analyses indicated the importance of international students to grow enrollment, support services needed by the international students, and the agile architecture structures required to provide services such as writing and language support, housing and visa support, and mental health and well-being support. Small private universities in Canada may benefit from the results of this study demonstrating the need for enhanced support services for the international students who are critical to their financial sustainability, and thus the retention of more choices in institutions of higher education in Canada

    Public engagement with marine climate change issues: (Re)framings, understandings and responses

    Get PDF
    Climate change impacts on marine environments have been somewhat neglected in climate change research, particularly with regard to their social dimensions and implications. This paper contributes to addressing this gap through presenting a UK focused mixed-method study of how publics frame, understand and respond to marine climate change-related issues. It draws on data from a large national survey of UK publics (N = 1,001), undertaken in January 2011 as part of a wider European survey, in conjunction with in-depth qualitative insights from a citizens’ panel with participants from the East Anglia region, UK. This reveals that discrete marine climate change impacts, as often framed in technical or institutional terms, were not the most immediate or significant issues for most respondents. Study participants tended to view these climate impacts ‘in context’, in situated ways, and as entangled with other issues relating to marine environments and their everyday lives. Whilst making connections with scientific knowledge on the subject, public understandings of marine climate impacts were mainly shaped by personal experience, the visibility and proximity of impacts, sense of personal risk and moral or equity-based arguments. In terms of responses, study participants prioritised climate change mitigation measures over adaptation, even in high-risk areas. We consider the implications of these insights for research and practices of public engagement on marine climate impacts specifically, and climate change more generally

    Mercury flux to sediments of Lake Tahoe, California-Nevada

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Water, Air, & Soil Pollution 210 (2010): 399-407, doi:10.1007/s11270-009-0262-y.We report estimates of mercury (Hg) flux to the sediments of Lake Tahoe, California-Nevada: 2 and 15-20 ”g/m2/yr in preindustrial and modern sediments, respectively. These values result in a modern to preindustrial flux ratio of 7.5-10, which is similar to flux ratios recently reported for other alpine lakes in California, and greater than the value of 3 typically seen worldwide. We offer plausible hypotheses to explain the high flux ratios, including (1) proportionally less photoreduction and evasion of Hg with the onset of cultural eutrophication and (2) a combination of enhanced regional oxidation of gaseous elemental Hg and transport of the resulting reactive gaseous Hg to the surface with nightly downslope flows of air. If either of these mechanisms is correct, it could lead to local/regional solutions to lessen the impact of globally increasing anthropogenic emissions of Hg on Lake Tahoe and other alpine ecosystems.Funding was provided by Miami University, EPA-STAR, the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, and the USGS

    Patterns of spatial and temporal variability of UV transparency in Lake Tahoe, California-Nevada

    Get PDF
    Lake Tahoe is an ultra-oligotrophic subalpine lake that is renowned for its clarity. The region experiences little cloud cover and is one of the most UV transparent lakes in the world. As such, it is an ideal environment to study the role of UV radiation in aquatic ecosystems. Long-term trends in Secchi depths showed that water transparency to visible light has decreased in recent decades, but limited data are available on the UV transparency of the lake. Here we examine how ultraviolet radiation varies relative to longer-wavelength photosynthetically active radiation (PAR, 400-700 nm, visible wavelengths) horizontally along inshore-offshore transects in the lake and vertically within the water column as well as temporally throughout 2007. UV transparency was more variable than PAR transparency horizontally across the lake and throughout the year. Seasonal patterns of Secchi transparency differed from both UV and PAR, indicating that different substances may be responsible for controlling transparency to UV, PAR, and Secchi. In surface waters, UVA (380 nm) often attenuated more slowly than PAR, a pattern visible in only exceptionally transparent waters with very low dissolved organic carbon. On many sampling dates, UV transparency decreased progressively with depth suggesting surface photobleaching, reductions in particulate matter, increasing chlorophyll a, or some combination of these increased during summer months. Combining these patterns of UV transparency with data on visible light provides a more comprehensive understanding of ecosystem structure, function, and effects of environmental change in highly transparent alpine and subalpine lakes such as Tahoe

    Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies

    Get PDF
    The industrialization of the deep sea is expanding worldwide. Increasing oil and gas exploration activities in the absence of sufficient baseline data in deep-sea ecosystems has made environmental management challenging. Here, we review the types of activities that are associated with global offshore oil and gas development in water depths over 200 m, the typical impacts of these activities, some of the more extreme impacts of accidental oil and gas releases, and the current state of management in the major regions of offshore industrial activity including 18 exclusive economic zones. Direct impacts of infrastructure installation, including sediment resuspension and burial by seafloor anchors and pipelines, are typically restricted to a radius of ~100 m on from the installation on the seafloor. Discharges of water-based and low-toxicity oil-based drilling muds and produced water can extend over 2 km, while the ecological impacts at the population and community levels on the seafloor are most commonly on the order of 200–300 m from their source. These impacts may persist in the deep sea for many years and likely longer for its more fragile ecosystems, such as cold-water corals. This synthesis of information provides the basis for a series of recommendations for the management of offshore oil and gas development. An effective management strategy, aimed at minimizing risk of significant environmental harm, will typically encompass regulations of the activity itself (e.g., discharge practices, materials used), combined with spatial (e.g., avoidance rules and marine protected areas), and temporal measures (e.g., restricted activities during peak reproductive periods). Spatial management measures that encompass representatives of all of the regional deep-sea community types is important in this context. Implementation of these management strategies should consider minimum buffer zones to displace industrial activity beyond the range of typical impacts: at least 2 km from any discharge points and surface infrastructure and 200 m from seafloor infrastructure with no expected discharges. Although managing natural resources is, arguably, more challenging in deep-water environments, inclusion of these proven conservation tools contributes to robust environmental management strategies for oil and gas extraction in the deep sea.Copyright © 2016 Cordes, Jones, Schlacher, Amon, Bernardino, Brooke, Carney, DeLeo, Dunlop, Escobar-Briones, Gates, GĂ©nio, Gobin, Henry, Herrera, Hoyt, Joye, Kark, Mestre, Metaxas, Pfeifer, Sink, Sweetman and Witte. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms
    • 

    corecore