347 research outputs found

    Considerations for Evaluating Ultraviolet Radiation-Induced Genetic Damage Relative to Antarctic Ozone Depletion

    Get PDF
    Springtime ozone depletion over the Antarctic results in increased UVB in local marine environments. It has been established that decreases in primary productivity occur with decreases in ozone concentrations, but the impact of increased UVB on the functioning and stability of the ecosystem has not yet been determined. Very little has been done to evaluate the potential for genetic damage caused by the increase in UVB, and this type of damage is most significant relative to the fitness and maintenance of populations. An essential problem in evaluating genotoxic effects is the lack of appropriate techniques to sample and quantify genetic damage in field populations under ambient UVB levels. In addition, it is currently not feasible to estimate exposure levels for organisms in their natural habitats

    Considerations for Evaluating Ultraviolet Radiation-Induced Genetic Damage Relative to Antarctic Ozone Depletion

    Get PDF
    Springtime ozone depletion over the Antarctic results in increased UVB in local marine environments. It has been established that decreases in primary productivity occur with decreases in ozone concentrations, but the impact of increased UVB on the functioning and stability of the ecosystem has not yet been determined. Very little has been done to evaluate the potential for genetic damage caused by the increase in UVB, and this type of damage is most significant relative to the fitness and maintenance of populations. An essential problem in evaluating genotoxic effects is the lack of appropriate techniques to sample and quantify genetic damage in field populations under ambient UVB levels. In addition, it is currently not feasible to estimate exposure levels for organisms in their natural habitats

    Spectral signatures of photosynthesis I: Review of Earth organisms

    Full text link
    Why do plants reflect in the green and have a 'red edge' in the red, and should extrasolar photosynthesis be the same? We provide: 1) a brief review of how photosynthesis works; 2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges; 3) a synthesis of photosynthetic surface spectral signatures; 4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: a) the wavelength of peak incident photon flux; b) the longest available wavelength for core antenna or reaction center pigments; and c) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy the above criteria.Comment: 69 pages, 7 figures, forthcoming in Astrobiology March 200

    Distribution and Abundance of MAAs in 33 Species of Microalgae across 13 Classes

    Get PDF
    We provide a direct comparison of the distribution and abundance of mycosporine-like amino acids (MAAs) in a diverse range of microalgal cultures (33 species across 13 classes) grown without supplementary ultraviolet radiation (UV). We compare the MAAs in cultures with those present in characterised natural phytoplankton populations from the English Channel. We detected 25 UV absorbing compounds including at least two with multiple absorption maxima. We used LC-MS to provide chemical characterisation of the six most commonly occurring MAAs, namely, palythene, palythine, mycosporine-glycine, palythenic acid, porphyra-334 and shinorine. MAAs were abundant (up to 7 pg MAA cell−1) in 10 species, with more minor and often unknown MAAs in a further 11 cultures. Shinorine was the most frequently occurring and abundant MAA (up to 6.5 pg cell−1) and was present in all but two of the MAA-containing species. The study provides further insight into the diversity and abundance of MAAs important from an ecological perspective and as potential source of natural alternatives to synthetic sunscreens

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora)

    Get PDF
    Mycosporine-like amino acids (MAAs) are a family of secondary metabolites known to protect organisms exposed to solar UV radiation. We tested their distribution among several planktonic ciliates bearing Chlorella isolated from an oligo-mesotrophic lake in Tyrol, Austria. In order to test the origin of these compounds, the MAAs were assessed by high performance liquid chromatography in both the ciliates and their symbiotic algae.Considering all Chlorella-bearing ciliates, we found: (i) seven different MAAs (mycosporine-glycine, palythine, asterina-330, shinorine, porphyra-334, usujirene, palythene); (ii) one to several MAAs per species and (iii) qualitative and quantitative seasonal changes in the MAAs (e.g. in Pelagodileptus trachelioides). In all species tested, concentrations of MAAs were always <1% of ciliate dry weight.Several MAAs were also identified in the Chlorella isolated from the ciliates, thus providing initial evidence for their symbiotic origin. In Uroleptus sp., however, we found evidence for a dietary source of MAAs.Our results suggest that accumulation of MAAs in Chlorella-bearing ciliates represents an additional benefit of this symbiosis and an adaptation for survival in sunlit, UV-exposed waters

    Southern Ocean Action Plan (2021-2030) in support of the United Nations Decade of Ocean Science for Sustainable Development

    Get PDF
    In 2017, the United Nations proclaimed a Decade of Ocean Science for Sustainable Development (hereafter referred to as the UN Ocean Decade) from 2021 until 2030 to support efforts to reverse the cycle of decline in ocean health. To achieve this ambitious goal, this initiative aims to gather ocean stakeholders worldwide behind a common framework that will ensure ocean science can fully support countries in creating improved conditions for sustainable development of the world’s oceans. The initiative strives to strengthen the international cooperation needed to develop the scientific research and innovative technologies that can connect ocean science with the needs of society at the global scale. Based on the recommendations in the Implementation Plan of the United Nations Decade of Ocean Science for Sustainable Development (Version 2.0, July 2021), the Southern Ocean community engaged in a stakeholder - oriented process to develop the Southern Ocean Action Plan. The Southern Ocean process engaged a broad community, which includes the scientific research community, the business and industry sector, and governance and management bodies. As part of this global effort, the Southern Ocean Task Force identified the needs of the Southern Ocean community to address the challenges related to the unique environmental characteristics and governance structure of the Southern Ocean. Through this community-driven process, we identified synergies within the Southern Ocean community and beyond in order to elaborate an Action Plan that provides a framework for Southern Ocean stakeholders to formulate and develop tangible actions and deliverables that support the UN Ocean Decade vision. Through the publication of this Action Plan, the Southern Ocean Task Force aims to mobilise the Southern Ocean community and inspire all stakeholders to seek engagement and leverage opportunities to deliver innovative solutions that maintain and foster the unique conditions of the Southern Ocean. This framework provides an initial roadmap to strengthen links between science, industry and policy, as well as to encourage internationally collaborative activities in order to address existing gaps in our knowledge and data coverage

    Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms

    Get PDF
    Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B) leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS), generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM). These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF) cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries
    corecore