23 research outputs found

    The effects of trophic transfer and environmental factors on microplastic uptake by plaice, Pleuronectes plastessa, and spider crab, Maja squinado

    Get PDF
    Microplastic pollution is apparent throughout the marine environment from deep ocean sediments to coastal habitats. Most of this is believed to originate on land, although marine activities, such as fishing and shipping, also contribute to the release and redistribution of microplastic. The relative importance of these maritime plastic sources, the manner by which they are distributed in the environment, and their effect on uptake by marine organisms are yet to be fully quantified. In this study, the relative impact of fishing activities on microplastic uptake by demersal fish and crustaceans was explored. Local fishing intensity, proximity to land and mean water velocity are compared to microplastic uptake in plaice, Pleuronectes platessa, and spider crab, Maja squinado, from the Celtic Sea. Observations were also made of microplastic contamination in ingested sand eels, Ammodytes tobianus, to establish a potential route of trophic transfer. This study is the first to identify microplastic contamination in spider crab and to document trophic transfer in the wild. Individuals were sampled from sites of varied fishing intensity in the Celtic Sea, and their stomach contents examined for the presence of microplastic. Contamination was observed in 50% of P. platessa, 42.4% of M. squinado, and 44.4% of A. tobianus. Locations of highest plastic abundance varied between P. platessa and M. squinado, indicating that different factors influence the uptake of microplastic in these two taxa. No significant link was observed between fishing effort and microplastic abundance; however, proximity to land was linked to increased abundance in M. squinado and Observations of whole prey demonstrate ongoing trophic transfer from A. tobianus to P. platessa. The lack of significant difference in microplastic abundance between predator and prey suggests that microplastic is not retained by P. platessa

    The dredge fishery for scallops in the United Kingdom (UK) : effects on marine ecosystems and proposals for future management

    Get PDF
    The king scallop fishery is the fastest growing fishery in the UK and currently the second most valuable. The UK is also home to the largest queen scallop fishery out of all of Europe. However, concerns have been raised about the effects of this recent growth of UK scallop fisheries among scientists and conservation bodies, as well as amongst the public following recent media campaigns (e.g. Hugh’s Fish Fight). This is because the majority of scallop landings (95%) are made by vessels towing scallop dredges, a type of fishing gear known to cause substantial environmental impacts. In addition, several scallop stocks are showing signs of overexploitation and there is concern over future impacts of ocean warming and acidification. Although, there have been several recent improvements in the management of scallop fisheries in parts of the UK, information on many scallop stocks around the UK is still lacking. This report therefore proposes that better monitoring and stock assessments are needed for these scallop fisheries and stocks. With recent legislation soon to result in the development of a new network of marine protected areas (MPAs) around the UK, and improved management of fisheries in European Marine Sites, now is a crucial time to review the UK scallop dredge fishery and its impacts on the wider environment so that this new legislation can support a sustainable future for the UK scallop fishery. This report was therefore commissioned by the Sustainable Inshore Fisheries Trust with the aim of collating existing knowledge on the management and environmental impacts of scallop fisheries around the UK

    Sessile and mobile components of a benthic ecosystem display mixed trends within a temperate marine reserve

    Get PDF
    Despite recent efforts to increase the global coverage of marine protected areas (MPAs), studies investigating the effectiveness of marine protected areas within temperate waters remain scarce. Furthermore, out of the few studies published on MPAs in temperate waters, the majority focus on specific ecological or fishery components rather than investigating the ecosystem as a whole. This study therefore investigated both the dynamics of benthic communities as well as fish populations within a recently established, fully protected marine reserve in Lamlash Bay, Isle of Arran, United Kingdom, over a four year period. A combination of photo and diver surveys revealed live maerl (Phymatolithon calcareum), macroalgae, sponges, hydroids, feather stars and eyelash worms (Myxicola infundibulum) to be significantly more abundant within the marine reserve than on surrounding fishing grounds. Likewise, the overall composition of epifaunal communities in and outside the reserve was significantly different. Both results are consistent with the hypothesis that protecting areas from fishing can encourage seafloor habitats to recover. In addition, the greater abundance of complex habitats within the reserve appeared to providing nursery habitat for juvenile cod (Gadus morhua) and scallops (Pecten maximus and Aequipecten opercularis). In contrast, there was little difference in the abundance of mobile benthic fauna, such as crabs and starfish, between the reserve and outside. Similarly, the use of baited underwater video cameras revealed no difference in the abundance and size of fish between the reserve and outside. Limited recovery of these ecosystem components may be due to the relatively small size (2.67 km2) and young age of the reserve (< 5 years), both of which might have limited the extent of any benefits afforded to mobile fauna and fish communities. Overall, this study provides evidence that fully protected marine reserves can encourage seafloor habitats to recover, which in turn, can create a number of benefits that flow back to other species, including those of commercial importance

    Trade-offs in marine protection : Multi-species interactions within a community-led temperate marine reserve

    Get PDF
    This study investigated the effects of a community-led temperate marine reserve in Lamlash Bay, Firth of Clyde, Scotland, on commercially important populations of European lobster (Homarus gammarus), brown crab (Cancer pagurus), and velvet swimming crabs (Necora puber). Potting surveys conducted over 4 years revealed significantly higher catch per unit effort (cpue 109% greater), weight per unit effort (wpue 189% greater), and carapace length (10-15 mm greater) in lobsters within the reserve compared with control sites. However, likely due to low levels of recruitment and increased fishing effort outside the reserve, lobster catches decreased in all areas during the final 2 years. Nevertheless, catch rates remained higher within the reserve across all years, suggesting the reserve buffered these wider declines. Additionally, lobster cpue and wpue declined with increasing distance from the boundaries of the marine reserve, a trend which tag-recapture data suggested were due to spillover. Catches of berried lobster were also twice as high within the reserve than outside, and the mean potential reproductive output per female was 22.1% greater. It was originally thought that higher densities of lobster within the reserve might lead to greater levels of aggression and physical damage. However, damage levels were solely related to body size, as large lobsters >110 mm had sustained over 218% more damage than smaller individuals. Interestingly, catches of adult lobsters were inversely correlated with those of juvenile lobsters, brown crabs, and velvet crabs, which may be evidence of competitive displacement and/or predation. Our findings provide evidence that temperate marine reserves can deliver fisheries and conservation benefits, and highlight the importance of investigating multispecies interactions, as the recovery of some species can have knock-on effects on others

    Marine Conservation Begins at Home : How a Local Community and Protection of a Small Bay Sent Waves of Change Around the UK and Beyond

    Get PDF
    The Firth of Clyde, on the west coast of Scotland, was once one of the most productive fishing grounds in Europe. However, successive decades of poor management and overfishing led to a dramatic loss of biodiversity and the collapse of finfish fisheries. In response, concerned local residents on the Isle of Arran, which lies in the middle of the Clyde, formed the Community of Arran Seabed Trust (COAST) in 1995. After 13 years of campaigning, a small (2.67 km2) area in Lamlash Bay became Scotland’s first no-take zone (NTZ) in 2008, and only the second in the UK. Since protection, biodiversity has increased substantially, along with the size, age and density of commercially important species such as the king scallop, Pecten maximus, and the European lobster, Homarus gammarus. Arguably more important, however, is the influence the Lamlash Bay NTZ and COAST have had on UK marine protection in general. Most notably, detailed research has created a case study that clearly demonstrates the benefits of protection in an area where little such evidence is available. This case has been used repeatedly to support efforts for increased protection of UK waters to help rebuild marine ecosystems and enhance their resilience in an uncertain future. In Scotland specifically, lobbying by COAST led to the designation of a much larger marine protected area (MPA, >250 km2) around the south of Arran, one of 30 new MPAs in the country. Evidence from Lamlash Bay has supported development of strong protection for these MPAs, seeing off lobbyist efforts to weaken management. Arran’s conservation success has been recognized internationally and is inspiring greater involvement of local communities around the UK, and further afield, to take the destiny of their coastal waters into their own hands. Successful marine conservation begins at home

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF
    corecore