55 research outputs found

    Multidecadal climate oscillations detected in a transparency record from a subtropical Florida lake

    Get PDF
    Synchronous interannual variability in water transparency observed in neighboring lakes has been linked to regional precipitation and resultant runoff of dissolved organic material, but many climate forcings oscillate over time scales longer than most limnological records can detect. A strong relationship (R2 5 0.86) between transparency and the previous two years’ rainfall and lake stage in a 25-yr record from a Florida lake enabled us to hindcast transparency from a longer 75-yr record of rainfall and lake stage. Predictions revealed a ,30-yr cycle in transparency linked to the Atlantic Multidecadal Oscillation (AMO). Transparency was greatest (4–8 m) in the cool phase of the AMO (,1962–1993) associated with below-average rainfall in south Florida and lowest (0.1– 3.0 m) during two warm phases (,1932–1961, 1994–present) associated with above-average, but more variable, annual rainfall. Models that predict effects of large-scale hydrologic restoration projects on solute export from South Florida’s expansive wetlands need to account for recent entry into a warm AMO phase, where teleconnections between the AMO phases and runoff are opposite of those shown for the U.S. interior

    Cyclical browning in a subtropical lake inferred from diatom records

    Get PDF
    Changing climate and land use activity are altering inputs of colored dissolved organic carbon (cDOC) into lakes. Increased cDOC reduces water transparency (browning) and changes lake physicochemistry, with biological consequences. Identifying the drivers and effects of changing cDOC inputs is critical for mitigating the consequences of climate change on lake ecosystems through adaptive watershed management. This study focused on determining the drivers of lake browning by evaluating shifts in diatom assemblages in subtropical, oligotrophic Lake Annie (FL, United States), which is known to experience climate-driven oscillations in transparency associated with watershed inputs of cDOC. We combined long-term limnological monitoring data and paleolimnological techniques to determine how diatoms respond to changes in cDOC and to infer past cDOC fluctuations relative to records of past climate and land use changes in the watershed. Diatom assemblage composition in a 14-year phytoplankton dataset was strongly correlated with cDOC-driven transparency fluctuations. Likewise, diatom assemblages in the upper 35 cm of the sediment core, which corresponded to a 35-year lake monitoring record, were also strongly related to past water transparency, yielding a strong transfer function (paleo model, R2 = 0.72). When the model was applied to the diatom record from a 166-cm sediment core, diatom-inferred transparency and rates of nutrient input showed that localized ditching in the 1930s enhanced the effect of climate oscillations on water transparency, intensifying cyclical browning thereafter. Integration of long-term monitoring and paleoecological data provided valuable insights into the history of the aquatic ecosystem, enabling implementation of adaptive management strategies to contend with a changing climate

    Intensification differentially affects the delivery of multiple ecosystem services in subtropical and temperate grasslands

    Get PDF
    Intensification, the process of intensifying land management to enhance agricultural goods, results in “intensive” pastures that are planted with productive grasses and fertilized. These intensive pastures provide essential ecosystem services, including forage production for livestock. Understanding the synergies and tradeoffs of pasture intensification on the delivery of services across climatic regions is crucial to shape policies and incentives for better management of natural resources. Here, we investigated how grassland intensification affects key components of provisioning (forage productivity and quality), supporting (plant diversity) and regulating services (CO2 and CH4 fluxes) by comparing these services between intensive versus extensive pastures in subtropical and temperate pastures in the USDA Long-term Agroecosystem Research (LTAR) Network sites in Florida and Oklahoma, USA over multiple years. Our results suggest that grassland intensification led to a decrease in measured supporting and regulating services, but increased forage productivity in temperate pastures and forage digestibility in subtropical pastures. Intensification decreased the net CO2 sink of subtropical pastures while it did not affect the sink capacity of temperate pastures; and it also increased environmental CH4 emissions from subtropical pastures and reduced CH4 uptake in temperate pastures. Intensification enhanced the global warming potential associated with C fluxes of pastures in both ecoregions. Our study demonstrates that comparisons of agroecosystems in contrasting ecoregions can reveal important drivers of ecosystem services and general or region-specific opportunities and solutions to maintaining agricultural production and reducing environmental footprints. Further LTAR network-scale comparisons of multiple ecosystem services across croplands and grazinglands intensively vs extensively managed are warranted to inform the sustainable intensification of agriculture within US and beyond. Our results highlight that achieving both food security and environmental stewardship will involve the conservation of less intensively managed pastures while adopting sustainable strategies in intensively managed pastures

    The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data

    Get PDF
    The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typicallyPeer reviewe

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Measurement(s) : temperature of water, temperature profile Technology Type(s) : digital curation Factor Type(s) : lake location, temporal interval Sample Characteristic - Environment : lake, reservoir Sample Characteristic - Location : global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14619009Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Trade-Offs Among Ecosystem Services And Disservices On A Florida Ranch

    No full text
    On the Ground We consider the trade-offs among good ecosystem services and bad ecosystem disservices attributable to past and current ranchland management and how such trade-offs depend on analysis at the scale of the ranch, the region, or the Earth. We focus on trade-offs in ecosystem services at one working ranch - Buck Island Ranch, location of the MacArthur Agro-ecology Research Center, lying in the headwaters of Florida\u27s Everglades - and managed for 25 years as a full-scale cow-calf operation by Archbold Biological Station, one of the world\u27s preeminent ecological research centers. The synthesis of how this ranch functions as an ecosystem (species, habitats, nutrient dynamics, hydrology, etc.) is set in the context of financial realities and economic viability. We develop a conceptual model to visualize trade-offs among ecosystem services and disservices, and provide insight into what it takes to be sustainable ecologically and economically. © 2013 The Society for Range Management

    Trade-Offs Among Ecosystem Services and Disservices on a Florida Ranch

    No full text
    On the Ground ‱ We consider the trade-offs among “good” ecosystem services and “bad” ecosystem disservices attributable to past and current ranchland management and how such trade-offs depend on analysis at the scale of the ranch, the region, or the Earth. ‱ We focus on trade-offs in ecosystem services at one working ranch—Buck Island Ranch, location of the MacArthur Agro-ecology Research Center, lying in the headwaters of Florida’s Everglades— and managed for 25 years as a full-scale cow– calf operation by Archbold Biological Station, one of the world’s preeminent ecological research centers. ‱ The synthesis of how this ranch functions as an ecosystem (species, habitats, nutrient dynamics, hydrology, etc.) is set in the context of financial realities and economic viability. ‱ We develop a conceptual model to visualize trade-offs among ecosystem services and disservices, and provide insight into what it takes to be sustainable ecologically and economically.The Rangelands archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform March 202
    • 

    corecore