81 research outputs found

    Highly selective recovery of Ni(II) in neutral and acidic media using a novel Ni(II)-ion imprinted polymer

    Get PDF
    In this work, an original ion-imprinted polymer (IIP) was synthetized for the highly selective removal of Ni(II) ions in neutral and acidic media. First a novel functional monomer (AMP-MMA) was synthetized through the amidation of 2-(aminomethyl)pyridine (AMP) with methacryloylchloride. Following Ni(II)/AMP-MMA complex formation study, the Ni(II)-IIP was produced via inverse suspension polymerization (DMSO in mineral oil) and characterized with solid state 13C CPMAS NMR, FT-IR, SEM and nitrogen adsorption/desorption experiments. The Ni(II)-IIP was then used in solid-phase extraction of Ni(II) exploring a wide range of pH (from neutral to strongly acidic solution), several initial concentrations of Ni(II) (from 0.02 to 1 g/L), and the presence of competitive ions (Co(II), Cu(II), Cd(II), Mn(II), and Mg(II)). The maximum Ni(II) adsorption capacity at pH 2 and pH 7 reached values of 138.9 mg/g and 169.5 mg/g, that are among the best reported in literature. The selectivity coefficients toward Cd(II), Mn(II), Co(II), Mg(II) and Cu(II) are also very high, with values up to 38.6, 32.9, 25.2, 23.1 and 15.0, respectively. The Ni(II)-IIP showed good reusability of up to 5 cycles both with acidic and basic Ni(II) eluents.Peer reviewe

    Medical theses as part of the scientific training in basic medical and dental education: experiences from Finland

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Teaching the principles of scientific research in a comprehensive way is important at medical and dental schools. In many countries medical and dental training is not complete until the candidate has presented a diploma thesis. The objective of this study was to evaluate the nature, quality, publication pattern and visibility of Finnish medical diploma theses.</p> <p>Methods</p> <p>A total of 256 diploma theses presented at the University of Oulu from 2001 to 2003 were analysed. Using a standardised questionnaire, we extracted several characteristics from each thesis. We used the name of the student to assess whether the thesis resulted in a scientific publication indexed in medical article databases. The number of citations received by each published thesis was also recorded.</p> <p>Results</p> <p>A high proportion of the theses (69.5%) were essentially statistical in character, often combined with an extensive literature review or the development of a laboratory method. Most of them were supervised by clinical departments (55.9%). Only 61 theses (23.8%) had been published in indexed scientific journals. Theses in the fields of biomedicine and diagnostics were published in more widely cited journals. The median number of citations received per year was 2.7 and the range from 0 to 14.7.</p> <p>Conclusion</p> <p>The theses were seldom written according to the principles of scientific communication and the proportion of actually published was small. The visibility of these theses and their dissemination to the scientific community should be improved.</p

    Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductility

    Get PDF
    Methylcellulose/cellulose nanocrystal (MC/CNC) nanocomposite fibers showing high ductility and high modulus of toughness were prepared by a simple aqueous wet-spinning from corresponding nanocomposite hydrogels into ethanol coagulation bath followed by drying. The hydrogel MC aq. concentration was maintained at 1 wt-% while the CNC aq. loading was systematically varied in the range 0 – 3 wt-%. This approach resulted in MC/CNC fiber compositions from 25/75 wt-%/wt-% to 95/5 wt-%/wt-%. The optimal mechanical properties were achieved with the MC/CNC composition of 80/20 wt-%/wt-% allowing high strain (36.1 %) and modulus of toughness (48.3 MJ/m3), still keeping a high strength (190 MPa). Further, we demonstrate that the continuous spinning of MC/CNC fibers is potentially possible. The results indicate possibilities to spin MC-based highly ductile composite fibers from environmentally benign aqueous solvents.Peer reviewe

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore