461 research outputs found

    Вплив попиту на процес ціноутворення

    Get PDF
    The creep behavior of nanocellulose films and aerogels are studied in a dynamic moisture environment, which is crucial to their performance in packaging applications. For these materials, the creep rate under cyclic humidity conditions exceeds any constant humidity creep rate within the cycling range, a phenomenon known as mechanosorptive creep. By varying the sample thickness and relative humidity ramp rate, it is shown that mechanosorptive creep is not significantly affected by the through-thickness moisture gradient. It is also shown that cellulose nanofibril aerogels with high porosity display the same accelerated creep as films. Microstructures larger than the fibril diameter thus appear to be of secondary importance to mechanosorptive creep in nanocellulose materials, suggesting that the governing mechanism is found between molecular scales and the length-scales of the fibril diameter.funding agencies|BiMaC Innovation|

    Hydrophobic cellulose nanopaper through a mild esterification procedure

    Get PDF
    Films of cellulose nanofibrils (CNF) (referred to as nanopaper) present a great potential in many applications due to the abundance, low environmental impact, excellent oxygen barrier properties and good mechanical performance of CNF. However, the strong hygroscopic character of the natural nanofibers limits their use in environments with high relative humidity. In this paper, we introduce a simple route for the esterification and processing of CNF with the aim of reducing their hydrophilicity, and producing hydrophobic cellulose nanopaper with reduced moisture sensitivity. The preparation steps of hydrophobic nanopapers involve vacuum filtration, solvent exchange from water to acetone, and reaction with anhydride molecules bearing different hydrophobic alkyl chains by hot pressing. Porous films having a surface area between 38 and 47g/m2 and pore sizes in the 3-200nm rangeare obtained. This method preserves the crystalline structure of native cellulose, and successfully introduces hydrophobic moieties on CNF surface as confirmed by FTIR, XPS and elemental analysis. As a result, modified nanopapers have a reduced moisture uptake, both higher surface water contact angle and wet tensile properties as compared with reference non-modified nanopaper, thus illustrating the benefit of the modification for the use of cellulose nanopaper in humid environments

    Hydrophobic cellulose nanopaper through a mild esterification procedure

    Get PDF
    Films of cellulose nanofibrils (CNF) (referred to as nanopaper) present a great potential in many applications due to the abundance, low environmental impact, excellent oxygen barrier properties and good mechanical performance of CNF. However, the strong hygroscopic character of the natural nanofibers limits their use in environments with high relative humidity. In this paper, we introduce a simple route for the esterification and processing of CNF with the aim of reducing their hydrophilicity, and producing hydrophobic cellulose nanopaper with reduced moisture sensitivity. The preparation steps of hydrophobic nanopapers involve vacuum filtration, solvent exchange from water to acetone, and reaction with anhydride molecules bearing different hydrophobic alkyl chains by hot pressing. Porous films having a surface area between 38 and 47g/m2 and pore sizes in the 3-200nm rangeare obtained. This method preserves the crystalline structure of native cellulose, and successfully introduces hydrophobic moieties on CNF surface as confirmed by FTIR, XPS and elemental analysis. As a result, modified nanopapers have a reduced moisture uptake, both higher surface water contact angle and wet tensile properties as compared with reference non-modified nanopaper, thus illustrating the benefit of the modification for the use of cellulose nanopaper in humid environments

    Systematic mechanical assessment of consolidants for canvas reinforcement under controlled environment

    Get PDF
    In conservation, adhesives are commonly used for the consolidation of canvases, yet their impact upon the canvas longevity has raised some concerns amongst conservators. As such, this study presents a testing protocol developed to assess the performance of commonly-used adhesives (natural animal glue and synthetic Beva® 371) and a newly developed nanocellulose consolidant, nanofibrillated nanocellulose (CNF). This includes their effect on the visual appearance, consolidation, and response of the mechanical properties of the treated canvases to programmed changes in relative humidity (RH). Scanning electron microscopy (SEM) images of animal glue- and Beva® 371-treated canvases revealed the presence of adhesive and consolidant on and in-between cotton fibres. The consolidants form bridges linking and connecting the cotton fibres and holding them together, whereas the CNF treatment, formed a visible continuous and dense surface coating. None of the treatments induced any discernible colour change. Controlled environment mechanical testing was performed in two ways: by applying a linearly increasing static force at fixed RH (Young’s modulus) and by applying a dynamic force together with a programmed RH cycling between 20 and 80% (RH dependent viscoelastic properties). CNF gave a higher value of Young’s modulus than either of the two commonly-used materials. Measurements at different values of RH (20 and 80%) demonstrated for all the treated canvases that at the lower value (RH 20%) Young’s modulus values were higher than at the higher value (RH 80%). Besides, the dynamic mode showed that the rate of response in all cases was rapid and reversible and that the nanofibrillated cellulose treated sample showed the highest variation in storage (or elastic) modulus measured at the end of RH plateaux (20 and 80% RH). Thus CNF appears to be a promising material given its higher mechanical performance. The protocol developed in this study has enabled us to examine and compare candidate materials for the consolidation of canvases systematically, using testing parameters that remained relevant to the field of canvas conservation

    Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment

    Get PDF
    Biobased nanofibers are increasingly considered in purification technologies due to their high mechanical properties, high specific surface area, versatile surface chemistry and natural abundance. In this work, cellulose and chitin nanofibers functionalized with carboxylate entities have been prepared from pulp residue (i.e., a waste product from the pulp and paper production) and crab shells, respectively, by chemically modifying the initial raw materials with the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated oxidation reaction followed by mechanical disintegration. A thorough investigation has first been carried out in order to evaluate the copper(II) adsorption capacity of the oxidized nanofibers. UV spectrophotometry, X-ray photoelectron spectroscopy and wavelength dispersive X-rays analysis have been employed as characterization tools for this purpose. Pristine nanofibers presented a relatively low content of negative charges on their surface thus adsorbing a low amount of copper(II). The copper adsorption capacity of the nanofibers was enhanced due to the oxidation treatment since the carboxylate groups introduced on the nanofibers surface constituted negative sites for electrostatic attraction of copper ions (Cu2+). The increase in copper adsorption on the nanofibers correlated both with the pH and carboxylate content and reached maximum values of 135 and 55mgg−1 for highly oxidized cellulose and chitin nanofibers, respectively. Furthermore, the metal ions could be easily removed from the contaminated nanofibers through a washing procedure in acidic water. Finally, the adsorption capacity of oxidized cellulose nanofibers for other metal ions, such as nickel(II), chromium(III) and zinc(II), was also demonstrated. We conclude that TEMPO oxidized biobased nanofibers from waste resources represent an inexpensive and efficient alternative to classical sorbents for heavy metal ions removal from contaminated water

    When and why performance goals predict exploitation behaviors: An achievement goal complex analysis of the selection function of assessment

    Get PDF
    We adopted an achievement goal complex framework (studying achievement goals and reasons connected to goals) to determine when and why performance goals predict exploitation of others’ knowledge. We hypothesized that: (i) when selective assessment is used, the link between performance goals and exploitation orientation is stronger; (ii) the reason why is that selective assessment fosters performance goals regulated by controlled reasons. Study 1 (N = 166) supported these hypotheses in a “real world” environment, comparing students enrolled in programs using non-selective vs. selective assessment (but having a majority of common courses). Then, an experimental causal-chain-like design was used. In Study 2 (N = 187), presenting an intelligence test as selective (vs. [self-]evaluative) predicted controlled reasons connected to performance goals. In Study 3 (N = 192), inducing performance goals using controlling (vs. autonomy-supportive) language predicted exploitation orientation, indirectly impairing information-sharing behaviors. The results contribute to the understanding of both the structural antecedents and interpersonal consequences of achievement goal complexes

    On the use of nanocellulose as reinforcement in polymer matrix composites

    Get PDF
    AbstractNanocellulose is often being regarded as the next generation renewable reinforcement for the production of high performance biocomposites. This feature article reviews the various nanocellulose reinforced polymer composites reported in literature and discusses the potential of nanocellulose as reinforcement for the production of renewable high performance polymer nanocomposites. The theoretical and experimentally determined tensile properties of nanocellulose are also reviewed. In addition to this, the reinforcing ability of BC and NFC is juxtaposed. In order to analyse the various cellulose-reinforced polymer nanocomposites reported in literature, Cox–Krenchel and rule-of-mixture models have been used to elucidate the potential of nanocellulose in composite applications. There may be potential for improvement since the tensile modulus and strength of most cellulose nanocomposites reported in literature scale linearly with the tensile modulus and strength of the cellulose nanopaper structures. Better dispersion of individual cellulose nanofibres in the polymer matrix may improve composite properties
    corecore