270 research outputs found

    PIK3CA mutation in HPV-associated OPSCC patients receiving deintensified chemoradiation

    Get PDF
    PIK3CA is the most frequently mutated gene in human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC). Prognostic implications of such mutations remain unknown. We sought to elucidate the clinical significance of PIK3CA mutations in HPV-associated OPSCC patients treated with definitive chemoradiation (CRT). Seventyseven patients with HPV-associated OPSCC were enrolled on two phase II clinical trials of deintensified CRT (60 Gy intensitymodulated radiotherapy with concurrent weekly cisplatin). Targeted next-generation sequencing was performed. Of the 77 patients, nine had disease recurrence (two regional, four distant, three regional and distant). Thirty-four patients had mutation( s) identified; 16 had PIK3CA mutations. Patients with wild-type-PIK3CA had statistically significantly higher 3-year disease-free survival than PIK3CA-mutant patients (93.4%, 95% confidence interval [CI] = 85.0% to 99.9% vs 68.8%, 95% CI = 26.7% to 89.8%; P=.004). On multivariate analysis, PIK3CA mutation was the only variable statistically significantly associated with disease recurrence (hazard ratio = 5.71, 95% CI = 1.53 to 21.3; P=.01). PIK3CA mutation is associated with worse diseasefree survival in a prospective cohort of newly diagnosed HPV-associated OPSCC patients treated with deintensified CRT

    Measurement of the Strong Coupling alpha s from Four-Jet Observables in e+e- Annihilation

    Full text link
    Data from e+e- annihilation into hadrons at centre-of-mass energies between 91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study the four-jet rate as a function of the Durham algorithm resolution parameter ycut. The four-jet rate is compared to next-to-leading order calculations that include the resummation of large logarithms. The strong coupling measured from the four-jet rate is alphas(Mz0)= 0.1182+-0.0003(stat.)+-0.0015(exp.)+-0.0011(had.)+-0.0012(scale)+-0.0013(mass) in agreement with the world average. Next-to-leading order fits to the D-parameter and thrust minor event-shape observables are also performed for the first time. We find consistent results, but with significantly larger theoretical uncertainties.Comment: 25 pages, 15 figures, Submitted to Euro. Phys. J.

    Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson's disease

    Get PDF
    A key driver of patients' well-being and clinical trials for Parkinson's disease (PD) is the course that the disease takes over time (progression and prognosis). To assess how genetic variation influences the progression of PD over time to dementia, a major determinant for quality of life, we performed a longitudinal genome-wide survival study of 11.2 million variants in 3,821 patients with PD over 31,053 visits. We discover RIMS2 as a progression locus and confirm this in a replicate population (hazard ratio (HR) = 4.77, P = 2.78 x 10(-11)), identify suggestive evidence for TMEM108 (HR = 2.86, P = 2.09 x 10(-8)) and WWOX (HR = 2.12, P = 2.37 x 10(-8)) as progression loci, and confirm associations for GBA (HR = 1.93, P = 0.0002) and APOE (HR = 1.48, P = 0.001). Polygenic progression scores exhibit a substantial aggregate association with dementia risk, while polygenic susceptibility scores are not predictive. This study identifies a novel synaptic locus and polygenic score for cognitive disease progression in PD and proposes diverging genetic architectures of progression and susceptibility.A genome-wide survival study identifies variants at RIMS2 associated with progression of Parkinson's disease to dementia and highlights divergence in the genetic architecture of disease onset and progression.Neurological Motor Disorder

    An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients

    Get PDF
    Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in C9ORF72. Using integrative computational methods combining all omics datasets, we identified novel and known dysregulated pathways. We used a C9ORF72 Drosophila model to distinguish pathways contributing to disease phenotypes from compensatory ones and confirmed alterations in some pathways in postmortem spinal cord tissue of patients with ALS. A different differentiation protocol was used to derive a separate set of C9ORF72 and control motor neurons. Many individual -omics differed by protocol, but some core dysregulated pathways were consistent. This strategy of analyzing patient-specific neurons provides disease-related outcomes with small numbers of heterogeneous lines and reduces variation from single-omics to elucidate network-based signatures.Genetics of disease, diagnosis and treatmen

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p
    corecore