23 research outputs found
Evaluating atmospheric methane inversion model results for Pallas, northern Finland
A state-of-the-art inverse model, CarbonTracker Data Assimilation Shell (CTDAS), was used to optimize estimates of methane (CH4) surface fluxes using atmospheric observations of CH4 as a constraint. The model consists of the latest version of the TM5 atmospheric chemistry-transport model and an ensemble Kalman filter based data assimilation system. The model was constrained by atmospheric methane surface concentrations, obtained from
the World Data Centre for Greenhouse Gases (WDCGG). Prior methane emissions were specified for five sources: biosphere, anthropogenic, fire, termites and ocean, of which bio-sphere and anthropogenic emissions were optimized. Atmospheric CH
4
mole fractions for
2007 from northern Finland calculated from prior and optimized emissions were compared
with observations. It was found that the root mean squared errors of the posterior esti
-
mates were more than halved. Furthermore, inclusion of NOAA observations of CH
4
from
weekly discrete air samples collected at Pallas improved agreement between posterior CH
4
mole fraction estimates and continuous observations, and resulted in reducing optimized
biosphere emissions and their uncertainties in northern Finland
Methane budget estimates in Finland from the CarbonTracker Europe-CH4 data assimilation system
We estimated the CH4 budget in Finland for 2004?2014 using the CTE-CH4 data assimilation system with an extended atmospheric CH4 observation network of seven sites from Finland to surrounding regions (HyytiÀlÀ, Kj?lnes, Kumpula, Pallas, Puijo, SodankylÀ, and Utö). The estimated average annual total emission for Finland is 0.6?±?0.5 Tg CH4 yr?1. Sensitivity experiments show that the posterior biospheric emission estimates for Finland are between 0.3 and 0.9 Tg CH4 yr?1, which lies between the LPX-Bern-DYPTOP (0.2 Tg CH4 yr?1) and LPJG-WHyMe (2.2 Tg CH4 yr?1) process-based model estimates. For anthropogenic emissions, we found that the EDGAR v4.2 FT2010 inventory (0.4 Tg CH4 yr?1) is likely to overestimate emissions in southernmost Finland, but the extent of overestimation and possible relocation of emissions are difficult to derive from the current observation network. The posterior emission estimates were especially reliant on prior information in central Finland. However, based on analysis of posterior atmospheric CH4, we found that the anthropogenic emission distribution based on a national inventory is more reliable than the one based on EDGAR v4.2 FT2010. The contribution of total emissions in Finland to global total emissions is only about 0.13%, and the derived total emissions in Finland showed no trend during 2004?2014. The model using optimized emissions was able to reproduce observed atmospheric CH4 at the sites in Finland and surrounding regions fairly well (correlation > 0.75, biasPeer reviewe
The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements
During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018.The UK sites were funded by the UK Department of Business,
Energy and Industrial Strategy (formerly the Department of Energy
and Climate Change) through contracts TRN1028/06/2015 and
TRN1537/06/2018. The stations at the ClimaDat Network in
Spain have received funding from the âla Caixaâ Foundation, under
agreement 2010-002624
The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe