10 research outputs found
Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease
AbstractAdverse lung effects following pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) are well documented in rodents. However, systemic effects are less understood. Epidemiological studies have shown increased cardiovascular disease risk after pulmonary exposure to airborne particles, which has led to concerns that inhalation exposure to MWCNTs might pose similar risks.We analyzed parameters related to cardiovascular disease, including plasma acute phase response (APR) proteins and plasma lipids, in female C57BL/6 mice exposed to a single intratracheal instillation of 0, 18, 54 or 162μg/mouse of small, entangled (CNTSmall, 0.8±0.1μm long) or large, thick MWCNTs (CNTLarge, 4±0.4μm long). Liver tissues and plasma were harvested 1, 3 and 28days post-exposure. In addition, global hepatic gene expression, hepatic cholesterol content and liver histology were used to assess hepatic effects.The two MWCNTs induced similar systemic responses despite their different physicochemical properties. APR proteins SAA3 and haptoglobin, plasma total cholesterol and low-density/very low-density lipoprotein were significantly increased following exposure to either MWCNTs. Plasma SAA3 levels correlated strongly with pulmonary Saa3 levels. Analysis of global gene expression revealed perturbation of the same biological processes and pathways in liver, including the HMG-CoA reductase pathway. Both MWCNTs induced similar histological hepatic changes, with a tendency towards greater response following CNTLarge exposure.Overall, we show that pulmonary exposure to two different MWCNTs induces similar systemic and hepatic responses, including changes in plasma APR, lipid composition, hepatic gene expression and liver morphology. The results link pulmonary exposure to MWCNTs with risk of cardiovascular disease
Predictors of urinary flame retardant concentration among pregnant women
BACKGROUND: Organophosphate compounds are commonly used in residential furniture, electronics, and baby products as flame retardants and are also used in other consumer products as plasticizers. Although the levels of exposure biomarkers are generally higher among children and decrease with age, relatively little is known about the individual characteristics associated with higher levels of exposure. Here, we investigate urinary metabolites of several organophosphate flame retardants (PFRs) in a cohort of pregnant women to evaluate patterns of exposure. METHODS: Pregnant North Carolina women (n=349) provided information on their individual characteristics (e.g. age and body mass index (BMI)) as a part of the Pregnancy Infection and Nutrition Study (2002–2005). Women also provided second trimester urine samples in which six PFR metabolites were measured using mass spectrometry methods. RESULTS: PFR metabolites were detected in every urine sample, with BDCIPP, DHPH, ip-PPP and BCIPHIPP detected in >80% of samples. Geometric mean concentrations were higher than what has been reported previously for similarly-timed cohorts. Women with higher pre-pregnancy BMI tended to have higher levels of urinary metabolites. For example, those classified as obese at the start of pregnancy had ip-PPP levels that were 1.52 times as high as normal weight range women (95% confidence interval: 1.23, 1.89). Women without previous children also tended to have higher urinary levels of DPHP, but lower levels of ip-PPP. In addition, we saw strong evidence of seasonal trends in metabolite concentrations (e.g. higher DPHP, BDCIPP, and BCIPHIPP in summer, and evidence of increasing ip-PPP between 2002 and 2005). CONCLUSIONS: Our results indicate ubiquitous exposure to PFRs among NC women in the early 2000s. Additionally, our work suggests that individual characteristics are related to exposure and that temporal variation, both seasonal and annual, may exist
Lack of muscle recovery after immobilization in old rats does not result from a defect in normalization of the ubiquitin–proteasome and the caspase-dependent apoptotic pathways
Immobilization periods increase with age because of decreased mobility and/or increased pathological episodes that require bed-rest. Sarcopaenia might be partially explained by an impaired recovery of skeletal muscle mass after a catabolic state due to an imbalance of muscle protein metabolism, apoptosis and cellular regeneration. Mechanisms involved in muscle recovery have been poorly investigated, and remain almost unknown in the elderly. This study aimed at studying the regulation of the capsase-dependent apoptotic and the ubiquitin–proteasome-dependent proteolytic pathways during immobilization and subsequent recovery during ageing. Old rats (22–24-months old) were subjected to unilateral hindlimb casting for 8 days (I8) and allowed to recover for 10 to 40 days (R10 to R40). Immobilized gastrocnemius muscles atrophied by 21%, and did not recover even at R40. Apoptotic index, amount of polyubiquitinated conjugates, proteasome chymotrypsin- and trypsin-like, apoptosome-linked caspase-9, -3, and -8 activities increased at I8. Conversely, the amount of the myogenic factor myf-5 decreased at I8. These changes paralleled the increase of intramuscular inflammation and oxidative stress. All these parameters normalized as soon as R10. The XIAP/Smac-DIABLO protein ratio decreased by half in immobilized muscles and remained low during recovery. Surprisingly, the non-immobilized leg also atrophied from R20, concomitantly with a decreased XIAP/Smac-DIABLO protein ratio. Altogether, this suggests that the impaired recovery following immobilization in ageing does not result from a lack of normalization of the caspase-dependent apoptotic and the ubiquitin–proteasome-dependent pathways, and also that immobilization could induce a general muscle loss and then contribute to the development of sarcopaenia in elderly