464 research outputs found
On Parity-Violating Three-Nucleon Interactions and the Predictive Power of Few-Nucleon EFT at Very Low Energies
We address the typical strengths of hadronic parity-violating three-nucleon
interactions in "pion-less" Effective Field Theory in the nucleon-deuteron
(iso-doublet) system. By analysing the superficial degree of divergence of loop
diagrams, we conclude that no such interactions are needed at leading order.
The only two linearly independent parity-violating three-nucleon structures
with one derivative mix two-S and two-P-half waves with iso-spin transitions
Delta I = 0 or 1. Due to their structure, they cannot absorb any divergence
ostensibly appearing at next-to-leading order. This observation is based on the
approximate realisation of Wigner's combined SU(4) spin-isospin symmetry in the
two-nucleon system, even when effective-range corrections are included.
Parity-violating three-nucleon interactions thus only appear beyond
next-to-leading order. This guarantees renormalisability of the theory to that
order without introducing new, unknown coupling constants and allows the direct
extraction of parity-violating two-nucleon interactions from three-nucleon
experiments.Comment: 20 pages LaTeX2e, including 9 figures as .eps file embedded with
includegraphicx. Minor modifications and stylistic corrections. Version
accepted for publication in Eur. Phys. J.
Universality in Four-Boson Systems
We report recent advances on the study of universal weakly bound four-boson
states from the solutions of the Faddeev-Yakubovsky equations with zero-range
two-body interactions. In particular, we present the correlation between the
energies of successive tetramers between two neighbor Efimov trimers and
compare it to recent finite range potential model calculations. We provide
further results on the large momentum structure of the tetramer wave function,
where the four-body scale, introduced in the regularization procedure of the
bound state equations in momentum space, is clearly manifested. The results we
are presenting confirm a previous conjecture on a four-body scaling behavior,
which is independent of the three-body one. We show that the correlation
between the positions of two successive resonant four-boson recombination peaks
are consistent with recent data, as well as with recent calculations close to
the unitary limit. Systematic deviations suggest the relevance of range
corrections.Comment: Accepted for publication in special issue of Few-Body Systems devoted
to the Sixth Workshop on the Critical Stability of Quantum Few-Body Systems,
October 2011, Erice, Sicily, Ital
Parity-violating neutron spin rotation in hydrogen and deuterium
We calculate the (parity-violating) spin rotation angle of a polarized
neutron beam through hydrogen and deuterium targets, using pionless effective
field theory up to next-to-leading order. Our result is part of a program to
obtain the five leading independent low-energy parameters that characterize
hadronic parity-violation from few-body observables in one systematic and
consistent framework. The two spin-rotation angles provide independent
constraints on these parameters. Using naive dimensional analysis to estimate
the typical size of the couplings, we expect the signal for standard target
densities to be 10^-7 to 10^-6 rad/m for both hydrogen and deuterium targets.
We find no indication that the nd observable is enhanced compared to the np
one. All results are properly renormalized. An estimate of the numerical and
systematic uncertainties of our calculations indicates excellent convergence.
An appendix contains the relevant partial-wave projectors of the three-nucleon
system.Comment: 44 pages, 17 figures; minor corrections; to be published in EPJ
Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)
The dissociative adsorption of hydrogen on Pd(100) has been studied by ab
initio quantum dynamics and ab initio molecular dynamics calculations. Treating
all hydrogen degrees of freedom as dynamical coordinates implies a high
dimensionality and requires statistical averages over thousands of
trajectories. An efficient and accurate treatment of such extensive statistics
is achieved in two steps: In a first step we evaluate the ab initio potential
energy surface (PES) and determine an analytical representation. Then, in an
independent second step dynamical calculations are performed on the analytical
representation of the PES. Thus the dissociation dynamics is investigated
without any crucial assumption except for the Born-Oppenheimer approximation
which is anyhow employed when density-functional theory calculations are
performed. The ab initio molecular dynamics is compared to detailed quantum
dynamical calculations on exactly the same ab initio PES. The occurence of
quantum oscillations in the sticking probability as a function of kinetic
energy is addressed. They turn out to be very sensitive to the symmetry of the
initial conditions. At low kinetic energies sticking is dominated by the
steering effect which is illustrated using classical trajectories. The steering
effects depends on the kinetic energy, but not on the mass of the molecules.
Zero-point effects lead to strong differences between quantum and classical
calculations of the sticking probability. The dependence of the sticking
probability on the angle of incidence is analysed; it is found to be in good
agreement with experimental data. The results show that the determination of
the potential energy surface combined with high-dimensional dynamical
calculations, in which all relevant degrees of freedon are taken into account,
leads to a detailed understanding of the dissociation dynamics of hydrogen at a
transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.
Choosing how to choose : Institutional pressures affecting the adoption of personnel selection procedures
The gap between science and practice in personnel selection is an ongoing concern of human resource management. This paper takes OliverÂŽs framework of organizationsÂŽ strategic responses to institutional pressures as a basis for outlining the diverse economic and social demands that facilitate or inhibit the application of scientifically recommended selection procedures. Faced with a complex network of multiple requirements, practitioners make more diverse choices in response to any of these pressures than has previously been acknowledged in the scientific literature. Implications for the science-practitioner gap are discussed
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
- âŠ