568 research outputs found

    A Combined Perceptual, Physico-Chemical, and Imaging Approach to ‘Odour-Distances’ Suggests a Categorizing Function of the Drosophila Antennal Lobe

    Get PDF
    How do physico-chemical stimulus features, perception, and physiology relate? Given the multi-layered and parallel architecture of brains, the question specifically is where physiological activity patterns correspond to stimulus features and/or perception. Perceived distances between six odour pairs are defined behaviourally from four independent odour recognition tasks. We find that, in register with the physico-chemical distances of these odours, perceived distances for 3-octanol and n-amylacetate are consistently smallest in all four tasks, while the other five odour pairs are about equally distinct. Optical imaging in the antennal lobe, using a calcium sensor transgenically expressed in only first-order sensory or only second-order olfactory projection neurons, reveals that 3-octanol and n-amylacetate are distinctly represented in sensory neurons, but appear merged in projection neurons. These results may suggest that within-antennal lobe processing funnels sensory signals into behaviourally meaningful categories, in register with the physico-chemical relatedness of the odours

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Quality Coding by Neural Populations in the Early Olfactory Pathway: Analysis Using Information Theory and Lessons for Artificial Olfactory Systems

    Get PDF
    In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble’s performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic

    Trade-Off between Toxicity and Signal Detection Orchestrated by Frequency- and Density-Dependent Genes

    Get PDF
    Behaviors in insects are partly highly efficient Bayesian processes that fulfill exploratory tasks ending with the colonization of new ecological niches. The foraging (for) gene in Drosophila encodes a cGMP-dependent protein kinase (PKG). It has been extensively described as a frequency-dependent gene and its transcripts are differentially expressed between individuals, reflecting the population density context. Some for transcripts, when expressed in a population at high density for many generations, concomitantly trigger strong dispersive behavior associated with foraging activity. Moreover, genotype-by-environment interaction (GEI) analysis has highlighted a dormant role of for in energetic metabolism in a food deprivation context. In our current report, we show that alleles of for encoding different cGMP-dependent kinase isoforms influence the oxidation of aldehyde groups of aromatic molecules emitted by plants via Aldh-III and a phosphorylatable adaptor. The enhanced efficiency of oxidation of aldehyde odorants into carboxyl groups by the action of for lessens their action and toxicity, which should facilitate exploration and guidance in a complex odor environment. Our present data provide evidence that optimal foraging performance requires the fast metabolism of volatile compounds emitted by plants to avoid neurosensory saturation and that the frequency-dependent genes that trigger dispersion influence these processes
    corecore