14 research outputs found

    Past, present, and future of global health financing : a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995-2050

    Get PDF
    Background Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. Methods We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories-government, out-of-pocket, and prepaid private health spending-and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. Findings Between 1995 and 2016, health spending grew at a rate of 4.00% (95% uncertainty interval 3.89-4.12) annually, although it grew slower in per capita terms (2.72% [2.61-2.84]) and increased by less than 1percapitaoverthisperiodin22of195countries.Thehighestannualgrowthratesinpercapitahealthspendingwereobservedinuppermiddleincomecountries(5.55 1 per capita over this period in 22 of 195 countries. The highest annual growth rates in per capita health spending were observed in upper-middle-income countries (5.55% [5.18-5.95]), mainly due to growth in government health spending, and in lower-middle-income countries (3.71% [3.10-4.34]), mainly from DAH. Health spending globally reached 8.0 trillion (7.8-8.1) in 2016 (comprising 8.6% [8.4-8.7] of the global economy and 10.3trillion[10.110.6]inpurchasingpowerparityadjusteddollars),withapercapitaspendingofUS 10.3 trillion [10.1-10.6] in purchasing-power parity-adjusted dollars), with a per capita spending of US 5252 (5184-5319) in high-income countries, 491(461524)inuppermiddleincomecountries, 491 (461-524) in upper-middle-income countries, 81 (74-89) in lower-middle-income countries, and 40(3843)inlowincomecountries.In2016,0.4 40 (38-43) in low-income countries. In 2016, 0.4% (0.3-0.4) of health spending globally was in low-income countries, despite these countries comprising 10.0% of the global population. In 2018, the largest proportion of DAH targeted HIV/AIDS ( 9.5 billion, 24.3% of total DAH), although spending on other infectious diseases (excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6.27% per year). The leading sources of DAH were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation). For the first time, we included estimates of China's contribution to DAH (644.7millionin2018).Globally,healthspendingisprojectedtoincreaseto 644.7 million in 2018). Globally, health spending is projected to increase to 15.0 trillion (14.0-16.0) by 2050 (reaching 9.4% [7.6-11.3] of the global economy and $ 21.3 trillion [19.8-23.1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of 1.84% (1.68-2.02) annually, and with continuing disparities in spending between countries. In 2050, we estimate that 0.6% (0.6-0.7) of health spending will occur in currently low-income countries, despite these countries comprising an estimated 15.7% of the global population by 2050. The ratio between per capita health spending in high-income and low-income countries was 130.2 (122.9-136.9) in 2016 and is projected to remain at similar levels in 2050 (125.9 [113.7-138.1]). The decomposition analysis identified governments' increased prioritisation of the health sector and economic development as the strongest factors associated with increases in government health spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the health sector and increased government spending, health spending per capita could more than double, with greater impacts in countries that currently have the lowest levels of government health spending. Interpretation Financing for global health has increased steadily over the past two decades and is projected to continue increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income countries. Many low-income countries are expected to remain dependent on development assistance, although with greater government spending, larger investments in health are feasible. In the absence of sustained new investments in health, increasing efficiency in health spending is essential to meet global health targets.Peer reviewe

    Past, present, and future of global health financing: a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995–2050

    Get PDF
    Background: Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. Methods: We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories—government, out-of-pocket, and prepaid private health spending—and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. Findings: Between 1995 and 2016, health spending grew at a rate of 4·00% (95% uncertainty interval 3·89–4·12) annually, although it grew slower in per capita terms (2·72% [2·61–2·84]) and increased by less than 1percapitaoverthisperiodin22of195countries.Thehighestannualgrowthratesinpercapitahealthspendingwereobservedinuppermiddleincomecountries(555inlowermiddleincomecountries(3711 per capita over this period in 22 of 195 countries. The highest annual growth rates in per capita health spending were observed in upper-middle-income countries (5·55% [5·18–5·95]), mainly due to growth in government health spending, and in lower-middle-income countries (3·71% [3·10–4·34]), mainly from DAH. Health spending globally reached 8·0 trillion (7·8–8·1) in 2016 (comprising 8·6% [8·4–8·7] of the global economy and 103trillion[101106]inpurchasingpowerparityadjusteddollars),withapercapitaspendingofUS10·3 trillion [10·1–10·6] in purchasing-power parity-adjusted dollars), with a per capita spending of US5252 (5184–5319) in high-income countries, 491(461524)inuppermiddleincomecountries,491 (461–524) in upper-middle-income countries, 81 (74–89) in lower-middle-income countries, and 40(3843)inlowincomecountries.In2016,04countries,despitethesecountriescomprising100DAHtargetedHIV/AIDS(40 (38–43) in low-income countries. In 2016, 0·4% (0·3–0·4) of health spending globally was in low-income countries, despite these countries comprising 10·0% of the global population. In 2018, the largest proportion of DAH targeted HIV/AIDS (9·5 billion, 24·3% of total DAH), although spending on other infectious diseases (excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6·27% per year). The leading sources of DAH were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation). For the first time, we included estimates of China’s contribution to DAH (6447millionin2018).Globally,healthspendingisprojectedtoincreaseto644·7 million in 2018). Globally, health spending is projected to increase to 15·0 trillion (14·0–16·0) by 2050 (reaching 9·4% [7·6–11·3] of the global economy and $21·3 trillion [19·8–23·1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of 1·84% (1·68–2·02) annually, and with continuing disparities in spending between countries. In 2050, we estimate that 0·6% (0·6–0·7) of health spending will occur in currently low-income countries, despite these countries comprising an estimated 15·7% of the global population by 2050. The ratio between per capita health spending in high-income and low-income countries was 130·2 (122·9–136·9) in 2016 and is projected to remain at similar levels in 2050 (125·9 [113·7–138·1]). The decomposition analysis identified governments’ increased prioritisation of the health sector and economic development as the strongest factors associated with increases in government health spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the health sector and increased government spending, health spending per capita could more than double, with greater impacts in countries that currently have the lowest levels of government health spending Interpretation: Financing for global health has increased steadily over the past two decades and is projected to continue increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income countries. Many low-income countries are expected to remain dependent on development assistance, although with greater government spending, larger investments in health are feasible. In the absence of sustained new investments in health, increasing efficiency in health spending is essential to meet global health targets. Funding: Bill & Melinda Gates Foundatio

    Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017

    Get PDF
    Background Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories. Methods We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections. Findings Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets. Interpretation Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Get PDF
    Exclusive breastfeeding (EBF)-giving infants only breast-milk for the first 6 months of life-is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization's Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030.This work was primarily supported by grant no. OPP1132415 from the Bill & Melinda Gates Foundation. Co-authors used by the Bill & Melinda Gates Foundation (E.G.P. and R.R.3) provided feedback on initial maps and drafts of this manuscript. L.G.A. has received support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Código de Financiamento 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant nos. 404710/2018-2 and 310797/2019-5). O.O.Adetokunboh acknowledges the National Research Foundation, Department of Science and Innovation and South African Centre for Epidemiological Modelling and Analysis. M.Ausloos, A.Pana and C.H. are partially supported by a grant from the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project no. PN-III-P4-ID-PCCF-2016-0084. P.C.B. would like to acknowledge the support of F. Alam and A. Hussain. T.W.B. was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. K.Deribe is supported by the Wellcome Trust (grant no. 201900/Z/16/Z) as part of his international intermediate fellowship. C.H. and A.Pana are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project no. PN-III-P2-2.1-SOL-2020-2-0351. B.Hwang is partially supported by China Medical University (CMU109-MF-63), Taichung, Taiwan. M.Khan acknowledges Jatiya Kabi Kazi Nazrul Islam University for their support. A.M.K. acknowledges the other collaborators and the corresponding author. Y.K. was supported by the Research Management Centre, Xiamen University Malaysia (grant no. XMUMRF/2020-C6/ITM/0004). K.Krishan is supported by a DST PURSE grant and UGC Centre of Advanced Study (CAS II) awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M.Kumar would like to acknowledge FIC/NIH K43 TW010716-03. I.L. is a member of the Sistema Nacional de Investigación (SNI), which is supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá. M.L. was supported by China Medical University, Taiwan (CMU109-N-22 and CMU109-MF-118). W.M. is currently a programme analyst in Population and Development at the United Nations Population Fund (UNFPA) Country Office in Peru, which does not necessarily endorses this study. D.E.N. acknowledges Cochrane South Africa, South African Medical Research Council. G.C.P. is supported by an NHMRC research fellowship. P.Rathi acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India. Ramu Rawat acknowledges the support of the GBD Secretariat for supporting the reviewing and collaboration of this paper. B.R. acknowledges support from Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal. A.Ribeiro was supported by National Funds through FCT, under the programme of ‘Stimulus of Scientific Employment—Individual Support’ within the contract no. info:eu-repo/grantAgreement/FCT/CEEC IND 2018/CEECIND/02386/2018/CP1538/CT0001/PT. S.Sajadi acknowledges colleagues at Global Burden of Diseases and Local Burden of Disease. A.M.S. acknowledges the support from the Egyptian Fulbright Mission Program. F.S. was supported by the Shenzhen Science and Technology Program (grant no. KQTD20190929172835662). A.Sheikh is supported by Health Data Research UK. B.K.S. acknowledges Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal for all the academic support. B.U. acknowledges support from Manipal Academy of Higher Education, Manipal. C.S.W. is supported by the South African Medical Research Council. Y.Z. was supported by Science and Technology Research Project of Hubei Provincial Department of Education (grant no. Q20201104) and Outstanding Young and Middle-aged Technology Innovation Team Project of Hubei Provincial Department of Education (grant no. T2020003). The funders of the study had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. All maps presented in this study are generated by the authors and no permissions are required to publish them

    Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17

    Get PDF
    Background Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40.0% (95% uncertainty interval [UI] 39.4-40.7) to 50.3% (50.0-50.5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46.3% (95% UI 46.1-46.5) in 2017, compared with 28.7% (28.5-29.0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88.6% (95% UI 87.2-89.7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664-711) of the 1830 (1797-1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76.1% (95% UI 71.6-80.7) of countries from 2000 to 2017, and in 53.9% (50.6-59.6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Mapping geographical inequalities in oral rehydration therapy coverage in low-income and middle-income countries, 2000-17

    Get PDF
    Background Oral rehydration solution (ORS) is a form of oral rehydration therapy (ORT) for diarrhoea that has the potential to drastically reduce child mortality; yet, according to UNICEF estimates, less than half of children younger than 5 years with diarrhoea in low-income and middle-income countries (LMICs) received ORS in 2016. A variety of recommended home fluids (RHF) exist as alternative forms of ORT; however, it is unclear whether RHF prevent child mortality. Previous studies have shown considerable variation between countries in ORS and RHF use, but subnational variation is unknown. This study aims to produce high-resolution geospatial estimates of relative and absolute coverage of ORS, RHF, and ORT (use of either ORS or RHF) in LMICs. Methods We used a Bayesian geostatistical model including 15 spatial covariates and data from 385 household surveys across 94 LMICs to estimate annual proportions of children younger than 5 years of age with diarrhoea who received ORS or RHF (or both) on continuous continent-wide surfaces in 2000-17, and aggregated results to policy-relevant administrative units. Additionally, we analysed geographical inequality in coverage across administrative units and estimated the number of diarrhoeal deaths averted by increased coverage over the study period. Uncertainty in the mean coverage estimates was calculated by taking 250 draws from the posterior joint distribution of the model and creating uncertainty intervals (UIs) with the 2 center dot 5th and 97 center dot 5th percentiles of those 250 draws. Findings While ORS use among children with diarrhoea increased in some countries from 2000 to 2017, coverage remained below 50% in the majority (62 center dot 6%; 12 417 of 19 823) of second administrative-level units and an estimated 6 519 000 children (95% UI 5 254 000-7 733 000) with diarrhoea were not treated with any form of ORT in 2017. Increases in ORS use corresponded with declines in RHF in many locations, resulting in relatively constant overall ORT coverage from 2000 to 2017. Although ORS was uniformly distributed subnationally in some countries, within-country geographical inequalities persisted in others; 11 countries had at least a 50% difference in one of their units compared with the country mean. Increases in ORS use over time were correlated with declines in RHF use and in diarrhoeal mortality in many locations, and an estimated 52 230 diarrhoeal deaths (36 910-68 860) were averted by scaling up of ORS coverage between 2000 and 2017. Finally, we identified key subnational areas in Colombia, Nigeria, and Sudan as examples of where diarrhoeal mortality remains higher than average, while ORS coverage remains lower than average. Interpretation To our knowledge, this study is the first to produce and map subnational estimates of ORS, RHF, and ORT coverage and attributable child diarrhoeal deaths across LMICs from 2000 to 2017, allowing for tracking progress over time. Our novel results, combined with detailed subnational estimates of diarrhoeal morbidity and mortality, can support subnational needs assessments aimed at furthering policy makers' understanding of within-country disparities. Over 50 years after the discovery that led to this simple, cheap, and life-saving therapy, large gains in reducing mortality could still be made by reducing geographical inequalities in ORS coverage. Copyright (c) 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    The global, regional, and national burden of gastro-oesophageal reflux disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Gastro-oesophageal reflux disease is a common chronic ailment that causes uncomfortable symptoms and increases the risk of oesophageal adenocarcinoma. We aimed to report the burden of gastro-oesophageal reflux disease in 195 countries and territories between 1990 and 2017, using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017. Methods We did a systematic review to identify measurements of the prevalence of gastro-oesophageal reflux disease in geographically defined populations worldwide between 1990 and 2017. These estimates were analysed with DisMod-MR, a Bayesian mixed-effects meta-regression tool that incorporates predictive covariates and adjustments for differences in study design in a geographical cascade of models. Fitted values for broader geographical units inform prior distributions for finer geographical units. Prevalence was estimated for 195 countries and territories. Reports of the frequency and severity of symptoms among individuals with gastro-oesophageal reflux disease were used to estimate the prevalence of cases with no, mild to moderate, or severe to very severe symptoms at a given time; these estimates were multiplied by disability weights to estimate years lived with disability (YLD). Findings Data to estimate gastro-oesophageal reflux disease burden were scant, totalling 144 location-years (unique measurements from a year and location, regardless of whether a study reported them alongside measurements for other locations or years) of prevalence data. These came from six (86%) of seven GBD super-regions, 11 (52%) of 21 GBD regions, and 39 (20%) of 195 countries and territories. Mean estimates of age-standardised prevalence for all locations in 2017 ranged from 4408 cases per 100 000 population to 14 035 cases per 100 000 population. Age-standardised prevalence was highest (>11 000 cases per 100 000 population) in the USA, Italy, Greece, New Zealand, and several countries in Latin America and the Caribbean, north Africa and the Middle East, and eastern Europe; it was lowest (<7000 cases per 100 000 population) in the high-income Asia Pacific, east Asia, Iceland, France, Denmark, and Switzerland. Global prevalence peaked at ages 75–79 years, at 18 820 (95% uncertainty interval [95% UI] 13 770–24 000) cases per 100 000 population. Global age-standardised prevalence was stable between 1990 and 2017 (8791 [95% UI 7772–9834] cases per 100 000 population in 1990 and 8819 [7781–9863] cases per 100 000 population in 2017, percentage change 0·3% [–0·3 to 0·9]), but all-age prevalence increased by 18·1% (15·6–20·4) between 1990 and 2017, from 7859 (6905–8851) cases per 100  000 population in 1990 to 9283 (8189–10 400) cases per 100  000 population in 2017. YLDs increased by 67·1% (95% UI 63·5–70·3) between 1990 and 2017, from 3·60 million (1·93–6·12) in 1990 to 6·01 million (3·22–10·19) in 2017. Interpretation Gastro-oesophageal reflux disease is common worldwide, although less so in much of eastern Asia. The stability of our global age-standardised prevalence estimates over time suggests that the epidemiology of the disease has not changed, but the estimates of all-age prevalence and YLDs, which increased between 1990 and 2017, suggest that the burden of gastro-oesophageal reflux disease is nonetheless increasing as a result of ageing and population growth. Funding Bill & Melinda Gates Foundation

    The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Oesophageal cancer is a common and often fatal cancer that has two main histological subtypes: oesophageal squamous cell carcinoma and oesophageal adenocarcinoma. Updated statistics on the incidence and mortality of oesophageal cancer, and on the disability-adjusted life-years (DALYs) caused by the disease, can assist policy makers in allocating resources for prevention, treatment, and care of oesophageal cancer. We report the latest estimates of these statistics for 195 countries and territories between 1990 and 2017, by age, sex, and Socio-demographic Index (SDI), using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD). Methods We used data from vital registration systems, vital registration-samples, verbal autopsy records, and cancer registries, combined with relevant modelling, to estimate the mortality, incidence, and burden of oesophageal cancer from 1990 to 2017. Mortality-to-incidence ratios (MIRs) were estimated and fed into a Cause of Death Ensemble model (CODEm) including risk factors. MIRs were used for mortality and non-fatal modelling. Estimates of DALYs attributable to the main risk factors of oesophageal cancer available in GBD were also calculated. The proportion of oesophageal squamous cell carcinoma to all oesophageal cancers was extracted by use of publicly available data, and its variation was examined against SDI, the Healthcare Access and Quality (HAQ) Index, and available risk factors in GBD that are specific for oesophageal squamous cell carcinoma (eg, unimproved water source and indoor air pollution) and for oesophageal adenocarcinoma (gastro-oesophageal reflux disease). Findings There were 473 000 (95% uncertainty interval [95% UI] 459 000–485 000) new cases of oesophageal cancer and 436 000 (425 000–448 000) deaths due to oesophageal cancer in 2017. Age-standardised incidence was 5·9 (5·7–6·1) per 100 000 population and age-standardised mortality was 5·5 (5·3–5·6) per 100 000. Oesophageal cancer caused 9·78 million (9·53–10·03) DALYs, with an age-standardised rate of 120 (117–123) per 100 000 population. Between 1990 and 2017, age-standardised incidence decreased by 22·0% (18·6–25·2), mortality decreased by 29·0% (25·8–32·0), and DALYs decreased by 33·4% (30·4–36·1) globally. However, as a result of population growth and ageing, the total number of new cases increased by 52·3% (45·9–58·9), from 310 000 (300 000–322 000) to 473 000 (459 000–485 000); the number of deaths increased by 40·0% (34·1–46·3), from 311 000 (301 000–323 000) to 436 000 (425 000–448 000); and total DALYs increased by 27·4% (22·1–33·1), from 7·68 million (7·42–7·97) to 9·78 million (9·53–10·03). At the national level, China had the highest number of incident cases (235 000 [223 000–246 000]), deaths (213 000 [203 000–223 000]), and DALYs (4·46 million [4·25–4·69]) in 2017. The highest national-level age-standardised incidence rates in 2017 were observed in Malawi (23·0 [19·4–26·5] per 100 000 population) and Mongolia (18·5 [16·4–20·8] per 100 000). In 2017, age-standardised incidence was 2·7 times higher, mortality 2·9 times higher, and DALYs 3·0 times higher in males than in females. In 2017, a substantial proportion of oesophageal cancer DALYs were attributable to known risk factors: tobacco smoking (39·0% [35·5–42·2]), alcohol consumption (33·8% [27·3–39·9]), high BMI (19·5% [6·3–36·0]), a diet low in fruits (19·1% [4·2–34·6]), and use of chewing tobacco (7·5% [5·2–9·6]). Countries with a low SDI and HAQ Index and high levels of indoor air pollution had a higher proportion of oesophageal squamous cell carcinoma to all oesophageal cancer cases than did countries with a high SDI and HAQ Index and with low levels of indoor air pollution. Interpretation Despite reductions in age-standardised incidence and mortality rates, oesophageal cancer remains a major cause of cancer mortality and burden across the world. Oesophageal cancer is a highly fatal disease, requiring increased primary prevention efforts and, possibly, screening in some high-risk areas. Substantial variation exists in age-standardised incidence rates across regions and countries, for reasons that are unclear. Funding Bill & Melinda Gates Foundation

    Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Previous attempts to characterise the burden of chronic respiratory diseases have focused only on specific disease conditions, such as chronic obstructive pulmonary disease (COPD) or asthma. In this study, we aimed to characterise the burden of chronic respiratory diseases globally, providing a comprehensive and up-to-date analysis on geographical and time trends from 1990 to 2017. Methods Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, we estimated the prevalence, morbidity, and mortality attributable to chronic respiratory diseases through an analysis of deaths, disability-adjusted life-years (DALYs), and years of life lost (YLL) by GBD super-region, from 1990 to 2017, stratified by age and sex. Specific diseases analysed included asthma, COPD, interstitial lung disease and pulmonary sarcoidosis, pneumoconiosis, and other chronic respiratory diseases. We also assessed the contribution of risk factors (smoking, second-hand smoke, ambient particulate matter and ozone pollution, household air pollution from solid fuels, and occupational risks) to chronic respiratory disease-attributable DALYs. Findings In 2017, 544·9 million people (95% uncertainty interval [UI] 506·9–584·8) worldwide had a chronic respiratory disease, representing an increase of 39·8% compared with 1990. Chronic respiratory disease prevalence showed wide variability across GBD super-regions, with the highest prevalence among both males and females in high-income regions, and the lowest prevalence in sub-Saharan Africa and south Asia. The age-sex-specific prevalence of each chronic respiratory disease in 2017 was also highly variable geographically. Chronic respiratory diseases were the third leading cause of death in 2017 (7·0% [95% UI 6·8–7·2] of all deaths), behind cardiovascular diseases and neoplasms. Deaths due to chronic respiratory diseases numbered 3 914 196 (95% UI 3 790 578–4 044 819) in 2017, an increase of 18·0% since 1990, while total DALYs increased by 13·3%. However, when accounting for ageing and population growth, declines were observed in age-standardised prevalence (14·3% decrease), age-standardised death rates (42·6%), and age-standardised DALY rates (38·2%). In males and females, most chronic respiratory disease-attributable deaths and DALYs were due to COPD. In regional analyses, mortality rates from chronic respiratory diseases were greatest in south Asia and lowest in sub-Saharan Africa, also across both sexes. Notably, although absolute prevalence was lower in south Asia than in most other super-regions, YLLs due to chronic respiratory diseases across the subcontinent were the highest in the world. Death rates due to interstitial lung disease and pulmonary sarcoidosis were greater than those due to pneumoconiosis in all super-regions. Smoking was the leading risk factor for chronic respiratory disease-related disability across all regions for men. Among women, household air pollution from solid fuels was the predominant risk factor for chronic respiratory diseases in south Asia and sub-Saharan Africa, while ambient particulate matter represented the leading risk factor in southeast Asia, east Asia, and Oceania, and in the Middle East and north Africa super-region. Interpretation Our study shows that chronic respiratory diseases remain a leading cause of death and disability worldwide, with growth in absolute numbers but sharp declines in several age-standardised estimators since 1990. Premature mortality from chronic respiratory diseases seems to be highest in regions with less-resourced health systems on a per-capita basis. Funding Bill & Melinda Gates Foundation
    corecore