77 research outputs found

    Fear Memory Retrieval Is Associated With a Reduction in AMPA Receptor Density at Thalamic to Amygdala Intercalated Cell Synapses

    Get PDF
    The amygdala plays a crucial role in attaching emotional significance to environmental cues. Its intercalated cell masses (ITC) are tight clusters of GABAergic neurons, which are distributed around the basolateral amygdala complex. Distinct ITC clusters are involved in the acquisition and extinction of conditioned fear responses. Previously, we have shown that fear memory retrieval reduces the AMPA/NMDA ratio at thalamic afferents to ITC neurons within the dorsal medio-paracapsular cluster. Here, we investigate the molecular mechanisms underlying the fear-mediated reduction in the AMPA/NMDA ratio at these synapses and, in particular, whether specific changes in the synaptic density of AMPA receptors underlie the observed change. To this aim, we used a detergent-digested freeze-fracture replica immunolabeling technique (FRIL) approach that enables to visualize the spatial distribution of intrasynaptic AMPA receptors at high resolution. AMPA receptors were detected using an antibody raised against an epitope common to all AMPA subunits. To visualize thalamic inputs, we virally transduced the posterior thalamic complex with Channelrhodopsin 2-YFP, which is anterogradely transported along axons. Using face-matched replica, we confirmed that the postsynaptic elements were ITC neurons due to their prominent expression of μ-opioid receptors. With this approach, we show that, following auditory fear conditioning in mice, the formation and retrieval of fear memory is linked to a significant reduction in the density of AMPA receptors, particularly at spine synapses formed by inputs of the posterior intralaminar thalamic and medial geniculate nuclei onto identified ITC neurons. Our study is one of the few that has directly linked the regulation of AMPA receptor trafficking to memory processes in identified neuronal networks, by showing that fear-memory induced reduction in AMPA/NMDA ratio at thalamic-ITC synapses is associated with a reduced postsynaptic AMPA receptor density

    VIP-expressing interneurons in the anterior insular cortex contribute to sensory processing to regulate adaptive behavior

    Get PDF
    Adaptive behavior critically depends on the detection of behaviorally relevant stimuli. The anterior insular cortex (aIC) has long been proposed as a key player in the representation and integration of sensory stimuli, and implicated in a wide variety of cognitive and emotional functions. However, to date, little is known about the contribution of aIC interneurons to sensory processing. By using a combination of whole-brain connectivity tracing, imaging of neural calcium dynamics, and optogenetic modulation in freely moving mice across different experimental paradigms, such as fear conditioning and social preference, we describe here a role for aIC vasoactive intestinal polypeptide-expressing (VIP+) interneurons in mediating adaptive behaviors. Our findings enlighten the contribution of aIC VIP+ interneurons to sensory processing, showing that they are anatomically connected to a wide range of sensory-related brain areas and critically respond to behaviorally relevant stimuli independent of task and modality

    Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions

    Get PDF
    Altered glucocorticoid receptor (GR) signaling is a postulated mechanism for the pathogenesis of major depression. To mimic the human situation of altered GR function claimed for depression, we generated mouse strains that underexpress or overexpress GR, but maintain the regulatory genetic context controlling the GR gene. To achieve this goal, we used the following: (1) GR-heterozygous mutant mice (GR+/-) with a 50% GR gene dose reduction, and (2) mice overexpressing GR by a yeast artificial chromosome resulting in a twofold gene dose elevation. GR+/- mice exhibit normal baseline behaviors but demonstrate increased helplessness after stress exposure, a behavioral correlate of depression in mice. Similar to depressed patients, GR+/- mice have a disinhibited hypothalamic-pituitary-adrenal (HPA) system and a pathological dexamethasone/corticotropin-releasing hormone test. Thus, they represent a murine depression model with good face and construct validity. Overexpression of GR in mice evokes reduced helplessness after stress exposure, and an enhanced HPA system feedback regulation. Therefore, they may represent a model for a stress-resistant strain. These mouse models can now be used to study biological changes underlying the pathogenesis of depressive disorders. As a first potential molecular correlate for such changes, we identified a downregulation of BDNF protein content in the hippocampus of GR+/- mice, which is in agreement with the so-called neurotrophin hypothesis of depression

    Gap-filling eddy covariance methane fluxes : Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands

    Get PDF
    Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting halfhourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).Peer reviewe

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Ischemic injury in experimental stroke depends on angiotensin II

    No full text
    Copyright 2002 by FASEBSince pharmacological interactions of the renin-angiotensin system appear to alter the neurological outcome of stroke patients significantly, we examined the effect of elevated levels of angiotensin II and the role of its receptor subtype AT1 in brain infarction in transgenic mice after focal cerebral ischemia. Angiotensinogen-overexpressing and angiotensin receptor AT1 knockout mice underwent 1 h or 24 h permanent middle cerebral artery occlusion (MCAO). The current study revealed a much smaller penumbra size, i.e., brain tissue at risk, in angiotensinogen-overexpressing animals compared with their wild-type subgroup after 1 h MCAO, butanenlarged infarct size after 24 h. In contrast, a smaller lesion area of energy failure and a much larger penumbral area were found in AT1 knockout mice compared with wild-type litter-mates. Lower perfusion thresholds for ATP depletion and protein synthesis inhibition after MCAO in AT1-deficient mice and reduced cell damage in an in vitro model using embryonic neurons of AT1 knockout mice suggest injury mechanisms independent of arterial blood pressure. Our data, therefore, demonstrate a direct correlation between brain angiotensin II and the severity of ischemic injury in experimental stroke
    corecore