5,622 research outputs found
Strongly reduced bias dependence in spin-tunnel junctions obtained by ultraviolet light assisted oxidation
For future implementation of ferromagnetic tunnel junctions, we need a better understanding of the influence of the insulating barrier preparation method on the junction resistance, tunnel magnetoresistance (TMR), and its voltage bias dependence. In this letter, we focus on the bias dependence of junctions (Co-Al2O3-Ni80Fe20) prepared by ultraviolet light assisted in situ oxidation in an O-2 ambient. For an initial Al thickness of 1.3 nm, the resistance times area product of the junctions is 60 k Omega mu m(2), while showing up to 20% TMR at 5 mV bias. The decrease of TMR with bias voltage up to 1 V is remarkably small leading to V-1/2, for which half of the low-bias TMR remains, well over 0.6 V. (C) 2000 American Institute of Physics. [S0003-6951(00)02908-9]
Effect of microstructural evolution on magnetic properties of Ni thin films
Copyright © Indian Academy of Sciences.The magnetic properties of Ni thin films, in the range 20–500 nm, at the crystalline-nanocrystalline interface are reported. The effect of thickness, substrate and substrate temperature has been studied. For the films deposited at ambient temperatures on borosilicate glass substrates, the crystallite size, coercive field and magnetization energy density first increase and achieve a maximum at a critical value of thickness and decrease thereafter. At a thickness of 50 nm, the films deposited at ambient temperature onto borosilicate glass, MgO and silicon do not exhibit long-range order but are magnetic as is evident from the non-zero coercive field and magnetization energy. Phase contrast microscopy revealed that the grain sizes increase from a value of 30–50 nm at ambient temperature to 120–150 nm at 503 K and remain approximately constant in this range up to 593 K. The existence of grain boundary walls of width 30–50 nm is demonstrated using phase contrast images. The grain boundary area also stagnates at higher substrate temperature. There is pronounced shape anisotropy as evidenced by the increased aspect ratio of the grains as a function of substrate temperature. Nickel thin films of 50 nm show the absence of long-range crystalline order at ambient temperature growth conditions and a preferred [111] orientation at higher substrate temperatures. Thin films are found to be thermally relaxed at elevated deposition temperature and having large compressive strain at ambient temperature. This transition from nanocrystalline to crystalline order causes a peak in the coercive field in the region of transition as a function of thickness and substrate temperature. The saturation magnetization on the other hand increases with increase in substrate temperature.University Grants Commission for Centre of Advanced Studies in Physic
A 500 °C isothermal section for the Al-Au-Cu system
The Al-Au-Cu system and its associated ternary alloys and intermetallic compounds is surprisingly poorly known, and the authors could find no phase diagram for it in the literature. This article addresses this omission by presenting an isothermal section at 500 °C, derived with the aid of X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), metallography, and hardness measurements. The samples studied had generally received an anneal of 2 hours at 500 °C, primarily in order to complete any transformations that occurred during solidification and cooling of the castings. The possibility of further changes on protracted annealing at 500 °C is not ruled out, and the diagram presented is, therefore, applicable only to material prepared by thermal processing of an industrial nature. The presence of a ternary Β phase with a nominal stoichiometry of AlAu2-xCu1+x (0 ≤ x ≤ 1) was confirmed, and its phase field at 500 °C was determined. A number of the binary intermetallic phases were found to exhibit some solid solubility of the ternary element. In particular, the γ-Al4Cu9 phase extends deep into the ternary and, in the vicinity of the commercially interesting 18-carat line, appears to exist in a ternary ordered form, designated here as γ2
High frequency impedance based fault location in distribution system with DGs
Distributed generations (DGs) in the distribution systems are connected into the buses using power electronic converters. During fault, it is challenging to provide a constant impedance model for DGs in the system frequency due to the variable converter control strategies. System frequency impedance measurement based fault locations can be influenced by the converters’ fault behaviour. This study addresses this problem by proposing a wide-area high-frequency impedance comparison based fault location technique. The high-frequency impedance model of DG is provided. Based on the constant DG impedance model in high-frequency range, the faulted line sections can be distinguished by comparing the measured impedance differences without requiring the exact distribution system parameters. Simulation results show that the proposed wide-area transient measurements based fault location method can provide accurate faulted sections in the distribution systems with DGs regardless of the load and DG output variations, measurement noise, unbalanced loads and islanding operations
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
