72 research outputs found

    Simulation of ammonia decomposition in a catalytic reaction for hydrogen production

    Get PDF
    L'objectiu d'aquest treball es dissenyar un reactor per a la descomposició d'amoníac en hidrogen i nitrogen, fent us de un material catalitzador. L'anterior per alimentar amb hidrogen una cel·la de combustible de 150 W. Addicionalment, es considera la fabricació de la malla catalitica dissenyada (part interna que esta en contacte amb fluid, on succeeix la reacció) mitjançant la impressió 3D. El material catalític considerat és Ni-Ru / CeO2 amb un 2.5% de níquel i un 0.5% de ruteni i la taxa de reacció utilitzada ésta determinada per Lucentini, García Colli, et al. (2021). El disseny, la modelació i la simulació numèrica dels reactors catalític han estat realitzades mitjançant el software COMSOL Multiphysics®. En la primera secció de l'estudi, es simula el reactor amb diferents paràmetres geomètrics, per a determinar el seu efecte en el conjunt. A la segona part, es dissenya el reactor òptim, d'acord amb la geometria definida i s’analitzar la mecànica de fluids, transferència de massa, i de calor. A l'última secció es realitza una exploració de configuracions geomètriques alternatives per a comparar el rendiment dels reactors. El disseny òptim és un reactor de 30 mm de diàmetre i 15 mm de longitud, el qual és capaç de convertir un flux d'amoníac de 53.15 g / h completament . A més, el reactor ha d'operar a una temperatura de 600 °C a la paret i el flux d’entrada ha de ser pre-escalfat a 500 °C. El objetivo de este trabajo corresponde al diseño de un reactor para la descomposición de amoniaco en hidrógeno y nitrógeno, utilizando un material catalizador. Lo anterior para alimentar con hidrogeno una celda de combustible de 150 W. Adicionalmente, el diseño de la malla catalítica (parte interna en contacto con fluido, donde la reacción sucede) considera su manufactura mediante impresión 3D. El material catalítico considerado es Ni-Ru/CeO2 con 2.5% de níquel y 0.5% de rutenio y la tasa de reacción utilizada es la determina por Lucentini, García Colli, et al. (2021). Han sido realizados el diseño, modelación y simulación numérica de reactores catalíticos usando COMSOL Multiphysics®. En la primera sección del estudio, reactores con diferentes parámetros geométricos fueron simulados, para determinar su efecto en el desempeño del reactor. En la segunda parte, se diseñó el reactor óptimo de acuerdo con la geometría definida y se analizó la mecánica de fluidos, transferencia de masa y calor. En la última sección se realizó una exploración de otras configuraciones geométricas para comparar el rendimiento de los reactores. El diseño optimo es un rector de 30 mm de diámetro y un largo de 15 mm, el cual es capaz de convertir totalmente un flujo de amoniaco de 53.15 g/h. Además, el reactor debe operar a una temperatura de pared de 600°C y el flujo entrante debe ser precalentado a 500°C.The objective of this work corresponds to the design of a catalytic reactor for ammonia decomposition into hydrogen and nitrogen, using a catalyst material. This for feed with hydrogen a fuel cell of 150W. Additionally, the design of the catalytic grid (internal part in touch with the fluid, where the reaction occurs) considers it manufacturing using 3D printing technology. The catalytic material considered is Ni-Ru/CeO2 with 2.5% of nickel and 0.5% of ruthenium and the reaction rate utilized is the one determined by Lucentini, García Colli, et al. (2021). Have been done the design, modelling and numerical simulation of catalytic reactors using COMSOL Multiphysics®. In the first part of the study, reactors with different geometrical parameters were simulated, to determine its effect on the reactor performance. In the second part, a optimal reactor was design according to the geometry defined and its fluid mechanics, heat and mass transfers. In the last section, an exploration of others geometrical configurations was done to compare the performance of the reactors. The optimal design is a 30 mm diameter reactor and a length of 15 mm, which can totally convert an ammonia flow of 53.15 g/h. Besides, the reactor must operate at 600°C at the wall and the entering flow must be pre-heated at 500°C

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore