21 research outputs found

    The Implications of the Piagetian Stages to Readiness for Baptism

    Get PDF
    The Problem. This study was designed to discover how children from Seventh-day Adventist families react to their baptism after the event. Do they feel that they were ready at the time of baptism? Do they think they understood the Bible doctrines when they were baptized? Which people and factors influenced them in their decision? Have these children reached cognitive maturity according to the Formal Operations stage in Piagetian terms, the stage at which children are accountable for their decisions. Method. A questionnaire of thirty-three questions was given to children in selected Adventist schools who had been baptized between June 1972 and June 1982. Five hundred and eighty two answered these questions. Chi Square tests were employed to analyze the data. All the answers reported on the questionnaires were related to the Piagetian stages of cognitive development and especially to the level of Formal Operations beginning at around 10-11 years according to Jean Piaget. Results. The research indicated that the peak age for baptism was 12 years in the Seventh-day Adventist church and that most of the children felt ready when they were baptized. However, as they grew older more felt that they did not understand Bible doctrines as well as when they decided to be baptized, and considered they were too young at the time of baptism. Concerning the degrees of influence in their decision for baptism the children as a whole revealed that the parents had the greatest influence, followed by their minister, adult relatives and friends, peers, and a week of spiritual emphasis. In the research a progression was found toward maturation from age 6 to 14 and above, supported in large measure by Piagetian stages of cognitive development. Conclusion. The findings of the study conducted among Seventh-day Adventist children about readiness for baptism support in part Piaget\u27s theory of cognitive development. When they wait until the Formal Operations stage, young people are aware of the importance of the decision for baptism. It is their commitment, a step forward in their spiritual life, encouraged by their environment, their family, their church and their school

    Reproducibility of a peripheral quantitative computed tomography scan protocol to measure the material properties of the second metatarsal

    Get PDF
    Background: Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Methods. Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec-1. The reference line was positioned at the most distal portion of the 2nd metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Results: Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI - mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI - mid shaft (ICC 0.99; CV% 3.2). Conclusions: The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2 nd metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures

    Global carbon budget 2019

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le QuĂ©rĂ© et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019)

    A Distributed and Policy-Free General-Purpose Shared Window System

    No full text
    Shared window systems allow collaboration-transparent, single-user applications to be displayed and interacted with on multiple users' workstations, enabling the members of a cooperative ensemble to simultaneously share and revise information. This paper presents a system capable of sharing applications running under the X Window System. In contrast to previously implemented systems, our shared window system addresses issues that are crucial for general-purpose use. Our shared window system is policy-free, i.e. there are no preferred policies for handling issues such as admission and floor control. Instead, it offers a set of essential mechanisms on top of which various policies and user paradigms may be realized. Further, the system distributes the sharing functionality among all sites involved in a cooperative activity. Measurements have shown a positive impact of this on the overall performance of the system and thus justified the viability of the design decisions taken. I

    Differentiation‐related epigenomic changes define clinically distinct keratinocyte cancer subclasses

    No full text
    Abstract Keratinocyte cancers (KC) are the most prevalent malignancies in fair‐skinned populations, posing a significant medical and economic burden to health systems. KC originate in the epidermis and mainly comprise basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). Here, we combined single‐cell multi‐omics, transcriptomics, and methylomics to investigate the epigenomic dynamics during epidermal differentiation. We identified ~3,800 differentially accessible regions between undifferentiated and differentiated keratinocytes, corresponding to regulatory regions associated with key transcription factors. DNA methylation at these regions defined AK/cSCC subtypes with epidermal stem cell‐ or keratinocyte‐like features. Using cell‐type deconvolution tools and integration of bulk and single‐cell methylomes, we demonstrate that these subclasses are consistent with distinct cells‐of‐origin. Further characterization of the phenotypic traits of the subclasses and the study of additional unstratified KC entities uncovered distinct clinical features for the subclasses, linking invasive and metastatic KC cases with undifferentiated cells‐of‐origin. Our study provides a thorough characterization of the epigenomic dynamics underlying human keratinocyte differentiation and uncovers novel links between KC cells‐of‐origin and their prognosis

    Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Human Molecular Genetics 2003

    No full text
    An expanded CAG repeat is the underlying genetic defect in Huntington disease, a disorder characterized by motor, psychiatric and cognitive deficits and striatal atrophy associated with neuronal loss. An accurate animal model of this disease is crucial for elucidation of the underlying natural history of the illness and also for testing experimental therapeutics. We established a new yeast artificial chromosome (YAC) mouse model of HD with the entire human HD gene containing 128 CAG repeats (YAC128) which develops motor abnormalities and age-dependent brain atrophy including cortical and striatal atrophy associated with striatal neuronal loss. YAC128 mice exhibit initial hyperactivity, followed by the onset of a motor deficit and finally hypokinesis. The motor deficit in the YAC128 mice is highly correlated with striatal neuronal loss, providing a structural correlate for the behavioral changes. The natural history of HD-related changes in the YAC128 mice has been defined, demonstrating the presence of huntingtin inclusions after the onset of behavior and neuropathological changes. The HD-related phenotypes of the YAC128 mice show phenotypic uniformity with low inter-animal variability present, which together with the age-dependent striatal neurodegeneration make it an ideal mouse model for the assessment of neuroprotective and other therapeutic interventions
    corecore