1,425 research outputs found

    Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex

    Get PDF
    The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network (DMN) remains largely unknown. Here we use intracranial recordings in the human posteromedial cortex (PMC), a core node within the DMN, during conditions of cued rest, autobiographical judgments, and arithmetic processing. We found a heterogeneous profile of PMC responses in functional, spatial, and temporal domains. Although the majority of PMC sites showed increased broad gamma band activity (30-180 Hz) during rest, some PMC sites, proximal to the retrosplenial cortex, responded selectively to autobiographical stimuli. However, no site responded to both conditions, even though they were located within the boundaries of the DMN identified with resting-state functional imaging and similarly deactivated during arithmetic processing. These findings, which provide electrophysiological evidence for heterogeneity within the core of the DMN, will have important implications for neuroimaging studies of the DMN

    Quantification of indirect pathway inhibition by the adenosine A 2a antagonist SYN115 in Parkinson disease

    Get PDF
    Adenosine A(2a) receptor antagonists reduce symptom severity in Parkinson disease (PD) and animal models. Rodent studies support the hypothesis that A(2a) antagonists produce this benefit by reducing the inhibitory output of the basal ganglia indirect pathway. One way to test this hypothesis in humans is to quantify regional pharmacodynamic responses with cerebral blood flow (CBF) imaging. That approach has also been proposed as a tool to accelerate pharmaceutical dose-finding, but has not yet been applied in humans to drugs in development. We successfully addressed both these aims with a perfusion MRI study of the novel adenosine A(2a) antagonist SYN115. During a randomized, double-blind, placebo-controlled, crossover study in 21 PD patients on levodopa but no agonists, we acquired pulsed arterial spin labeling MRI at the end of each treatment period. SYN115 produced a highly significant decrease in thalamic CBF, consistent with reduced pallidothalamic inhibition via the indirect pathway. Similar decreases occurred in cortical regions whose activity decreases with increased alertness and externally-focused attention, consistent with decreased self-reported sleepiness on SYN115. Remarkably, we also derived quantitative pharmacodynamic parameters from the CBF responses to SYN115. These results suggested that the doses tested were on the low end of the effective dose range, consistent with clinical data reported separately. We conclude that (1) SYN115 enters the brain and exerts dose-dependent regional effects, (2) the most prominent of these effects is consistent with deactivation of the indirect pathway as predicted by preclinical studies; and (3) perfusion MRI can provide rapid, quantitative, clinically relevant dose-finding information for pharmaceutical development

    Text Line Segmentation of Historical Documents: a Survey

    Full text link
    There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines),automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.Comment: 25 pages, submitted version, To appear in International Journal on Document Analysis and Recognition, On line version available at http://www.springerlink.com/content/k2813176280456k3

    Causal hierarchy within the thalamo-cortical network in spike and wave discharges

    Get PDF
    Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al

    Distant from input : Evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition

    Get PDF
    The default mode network supports a variety of mental operations such as semantic processing, episodic memory retrieval, mental time travel and mind-wandering, yet the commonalities between these functions remains unclear. One possibility is that this system supports cognition that is independent of the immediate environment; alternatively or additionally, it might support higher-order conceptual representations that draw together multiple features. We tested these accounts using a novel paradigm that separately manipulated the availability of perceptual information to guide decision-making and the representational complexity of this information. Using task based imaging we established regions that respond when cognition combines both stimulus independence with multi-modal information. These included left and right angular gyri and the left middle temporal gyrus. Although these sites were within the default mode network, they showed a stronger response to demanding memory judgements than to an easier perceptual task, contrary to the view that they support automatic aspects of cognition. In a subsequent analysis, we showed that these regions were located at the extreme end of a macroscale gradient, which describes gradual transitions from sensorimotor to transmodal cortex. This shift in the focus of neural activity towards transmodal, default mode, regions might reflect a process of where the functional distance from specific sensory enables conceptually rich and detailed cognitive states to be generated in the absence of input

    Re-Imagining “Spaces” for Relating Within and Between France and Germany in the Long Nineteenth Century

    Get PDF
    The “modern world” as we now know it is quite different from that which was emerging in Western Europe and began to accelerate in its development under the impetus of revolution and wars at the turn of the nineteenth century. Not only were material conditions in the process of shifting from those grounded in more traditional, rural and agrarian ways of life to those developing into more urban and industrialized ones, but the “social ontology” and cultural forms of “mapping” and communicating about reality were also changing. This study employs a “macro-historical” framework which incorporates complexity and complex system principles to investigate some of the patterns of these highly transformative systemic changes as they impacted Germany and France in particular in the long nineteenth century. These societies are employed in this investigation for two reasons: 1) because they were among that handful of communities that directly participated in the emergence of modernization as a rather explosive and rapidly developing phenomena in that historical moment (whose consequences also included the emergence of new social movements and forms of social structuration as expressed in nationalism and the modern nation-state), and 2) because, as directly neighboring communities, these two illustrate in a microcosm some of the dynamic operations of closely co-existing complex systems themselves. Consideration of the lives and selected literary works of pairs of German and French writers at three different time points in the century grounds the discussion, because these artists are themselves viewed as important innovators who both embodied and expressed signs of the new forms of society and culture that were then emerging. These particular writers (Heinrich von Kleist and Germaine de Staêl; Heinrich Heine and Honoré de Balzac; and Heinrich Mann and Stéphane Mallarmé) are particularly suitable for this study because of their notably protean capacities for vision as well as their positions “on the margins” of their communities which not only afforded them insightful perspectives on the shifting sociocultural landscape but also challenged them to employ their talents to give the latter some novel narrative shape. After an Introduction which outlines much of the theoretical framework for the discussion, chapter one considers Staël and Kleist who expressed creative visions of (potentially) new kinds of social agents and their relationships to (those virtual) societies that were then appearing to be on the verge of emerging after the French Revolution and Napoleonic Wars. The second chapter discusses Heine and Balzac as artists trying to develop new aesthetics in a kind of (implicit) service to their respective German and French communities’ post-war efforts at recuperating and reconfiguring a new “social order” trending towards the “new modern.” And the third chapter considers Mann and Mallarmé, who are viewed as confronting some of the new adaptive challenges in the latter part of the century arising from continued progression of the powerful (and perceptibly impersonal) self-organizing forces of modernization and many Europeans’ disillusionment with (and withdrawal from) them, to which these writers responded with their own creative strategies for trying to actively address these challenges and provoke their contemporaries to do the same. The conclusion reflects upon the value of using a complex systems interpretive lens for understanding the roles and work of such writers, who are regarded via this lens as significant innovators who responded particularly meaningfully to the individual and communal challenges raised by the self-organizing forces operating in their historical moments in the nineteenth century. It also briefly considers the pros and cons of employing such a “holistic” perspective for appreciating such artistic work more generally

    Distinct and Overlapping Brain Areas Engaged during Value-Based, Mathematical, and Emotional Decision Processing.

    Get PDF
    When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes

    Flow and immersion in video games: The aftermath of a conceptual challenge

    Get PDF
    One of the most pleasurable aspects of video games is their ability to induce immersive experiences. However, there appears to be a tentative conceptualization of what an immersive experience is. In this short review, we specifically focus on the terms of flow and immersion, as they are the most widely used and applied definitions in the video game literature, whilst their differences remain disputable. We critically review the concepts separately and proceed with a comparison on their proposed differences. We conclude that immersion and flow do not substantially differ in current studies and that more evidence is needed to justify their separatio

    On sense and reference: examining the functional neuroanatomy of referential processing

    Get PDF
    In an event-related fMRI study, we examined the cortical networks involved in establishing. reference during language comprehension. We compared BOLD responses to sentences containing referentially ambiguous pronouns (e.g., "Ronald told Frank that he..."), referentially failing pronouns (e.g., "Rose told Emily that he...") or coherent pronouns. Referential ambiguity selectively recruited media[ prefrontal regions, suggesting that readers engaged in problemsolving to select a unique referent from the discourse model. Referential failure elicited activation increases in brain regions associated with mo rp ho -syntactic processing, and, for those readers who took failing pronouns to refer to unmentioned entities, additional regions associated with elaborative inferencing were observed. The networks activated by these two referential problems did not overlap with the network activated by a standard semantic anomaly. Instead, we observed a double dissociation, in that the systems activated by semantic anomaly are deactivated by referential ambiguity, and vice versa. This inverse coupling may reflect the dynamic recruitment of semantic and episodic processing to resolve semantically or referentially problematic situations. More generally, our findings suggest that neurocognitive accounts of language comprehension need to address not just how we parse a sentence and combine individual word meanings, but also how we determine who's who and what's what during language COmprehension. (c) 2007 Elsevier Inc. All rights reserved

    Brain correlates of pro-social personality traits: a voxel-based morphometry study

    Get PDF
    Of the five personality dimensions described by the Big Five Personality Model (Costa and McCrae 1992), Extraversion and Agreeableness are the traits most commonly associated with a pro-social orientation. In this study we tested whether a pro-social orientation, as expressed in terms of Extraversion and Agreeableness, is associated with a specific grey matter phenotype. Fifty-two healthy participants underwent magnetic resonance imaging (MRI) and completed the NEO-Five Factor Inventory (NEO-FFI), a self-report measure of the Big Five personality traits. Voxel-based morphometry (VBM) was used to investigate the correlation between brain structure and the personality traits of Agreeableness and Extraversion. We found that Extraversion was negatively correlated with grey matter density in the middle frontal and orbitofrontal gyri while Agreeableness was negatively correlated with grey matter density in the inferior parietal, middle occipital and posterior cingulate gyri. No positive correlations were found. These results suggest that pro-social personality traits seem to be associated with decreases in grey matter density in more frontal regions for Extraversion, and more posterior regions for Agreeableness.This research was funded by the Portuguese Foundation for Science and Technology (FCT): PIC/IC/83290/2007, which is supported by FEDER (POFC - COMPETE), and postdoctoral grant number: SFRH/BPD/75014/2010
    corecore