748 research outputs found
Inhibition of cellular protein secretion by norwalk virus nonstructural protein p22 requires a mimic of an endoplasmic reticulum export signal.
Protein trafficking between the endoplasmic reticulum (ER) and Golgi apparatus is central to cellular homeostasis. ER export signals are utilized by a subset of proteins to rapidly exit the ER by direct uptake into COPII vesicles for transport to the Golgi. Norwalk virus nonstructural protein p22 contains a YXΦESDG motif that mimics a di-acidic ER export signal in both sequence and function. However, unlike normal ER export signals, the ER export signal mimic of p22 is necessary for apparent inhibition of normal COPII vesicle trafficking, which leads to Golgi disassembly and antagonism of Golgi-dependent cellular protein secretion. This is the first reported function for p22. Disassembly of the Golgi apparatus was also observed in cells replicating Norwalk virus, which may contribute to pathogenesis by interfering with cellular processes that are dependent on an intact secretory pathway. These results indicate that the ER export signal mimic is critical to the antagonistic function of p22, shown herein to be a novel antagonist of ER/Golgi trafficking. This unique and well-conserved human norovirus motif is therefore an appealing target for antiviral drug development
Methylglyoxal Produced by Amyloid- Peptide-Induced Nitrotyrosination of Triosephosphate Isomerase Triggers Neuronal Death in Alzheimer’s Disease
Amyloid-β peptide (Aβ) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimer's disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect. In human neuroblastoma cells (SH-SY5Y), we evaluated the effects of Aβ42 oligomers on TPI nitrotyrosination. We found an increased production of methylglyoxal (MG), a toxic byproduct of the inefficient nitro-TPI function. The proapoptotic effects of Aβ42 oligomers, such as decreasing the protective Bcl2 and increasing the proapoptotic caspase-3 and Bax, were prevented with a MG chelator. Moreover, we used a double mutant TPI (Y165F and Y209F) to mimic nitrosative modifications due to Aβ action. Neuroblastoma cells transfected with the double mutant TPI consistently triggered MG production and a decrease in cell viability due to apoptotic mechanisms. Our data show for the first time that MG is playing a key role in the neuronal death induced by Aβ oligomers. This occurs because of TPI nitrotyrosination, which affects both tyrosines associated with the catalytic center
Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling
Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (lipopolysaccharide plus IFN-gamma), using a culture system of subventricular zone (SVZ)-derived NSCs mixed with microglia cells obtained from wild-type mice (iNOS(+/+)) or from iNOS knockout mice (iNOS(-/-)). We found an impairment of NSC cell proliferation in iNOS(+/+) mixed cultures, which was not observed in iNOS(-/-) mixed cultures. Furthermore, the increased release of NO by activated iNOS(+/+) microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite (ONOO-), or using the ONOO- degradation catalyst FeTMPyP cell proliferation and ERK signaling were restored to basal levels in iNOS(+/+) mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 mu M), for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the ERK/MAPK pathway.Foundation for Science and Technology, (FCT, Portugal); COMPETE; FEDER [PEst-C/SAU/LA0001/2013-2014, PEst-OE/EQB/LA0023/2013-2014, PTDC/SAU-NEU/102612/2008, PTDC/NEU-OSD/0473/2012]; FCT, Portugal [SERH/BPD/78901/2011, SERH/BD/38127/2007, SFRH/BD/77903/2011, SFRH/BD/79308/2011]info:eu-repo/semantics/publishedVersio
Development of an enhanced health-economic model and cost-effectiveness analysis of tiotropium + olodaterol Respimat® fixed-dose combination for chronic obstructive pulmonary disease patients in Italy
Background: The objective of this study was to compare the cost-effectiveness of the fixed-dose combination (FDC) of tiotropium + olodaterol Respimat® FDC with tiotropium alone for patients with chronic obstructive pulmonary disease (COPD) in the Italian health care setting using a newly developed patient-level Markov model that reflects the current understanding of the disease. Methods: While previously published models have largely been based around a cohort approach using a Markov structure and GOLD stage stratification, an individual-level Markov approach was selected for the new model. Using patient-level data from the twin TOnado trials assessing Tiotropium + olodaterol Respimat® FDC versus tiotropium, outcomes were modelled based on the trough forced expiratory volume (tFEV1) of over 1000 patients in each treatment arm, tracked individually at trial visits through the 52-week trial period, and after the trial period it was assumed to decline at a constant rate based on disease stage. Exacerbation risk was estimated based on a random-effects logistic regression analysis of exacerbations in UPLIFT. Mortality by age and disease stage was estimated from an analysis of TIOSPIR trial data. Cost of bronchodilators and other medications, routine management, and costs of treatment for moderate and severe exacerbations for the Italian setting were included. A cost-effectiveness analysis was conducted over a 15-year time horizon from the perspective of the Italian National Health Service. Results: Aggregating total costs and quality-adjusted life years (QALYs) for each treatment cohort over 15 years and comparing tiotropium + olodaterol Respimat® FDC with tiotropium alone, resulted in mean incremental co
Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments
BACKGROUND:
The mechanisms behind Aβ-peptide accumulation in non-familial Alzheimer’s disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aβ production by interacting to γ-secretase.
METHODS:
We searched for tetraspanins with altered expression in AD brains. The function of the selected tetraspanin was studied in vitro and the physiological relevance of our findings was confirmed in vivo.
RESULTS:
Tetraspanin-6 (TSPAN6) is increased in AD brains and overexpression in cells exerts paradoxical effects on Amyloid Precursor Protein (APP) metabolism, increasing APP-C-terminal fragments (APP-CTF) and Aβ levels at the same time. TSPAN6 affects autophagosome-lysosomal fusion slowing down the degradation of APP-CTF. TSPAN6 recruits also the cytosolic, exosome-forming adaptor syntenin which increases secretion of exosomes that contain APP-CTF.
CONCLUSIONS:
TSPAN6 is a key player in the bifurcation between lysosomal-dependent degradation and exosome mediated secretion of APP-CTF. This corroborates the central role of the autophagosomal/lysosomal pathway in APP metabolism and shows that TSPAN6 is a crucial player in APP-CTF turnover
Improving virus production through quasispecies genomic selection and molecular breedings
Virus production still is a challenging issue in antigen manufacture, particularly with slow-growing viruses. Deep-sequencing of genomic regions indicative of efficient replication may be used to identify high-fitness minority individuals suppressed by the ensemble of mutants in a virus quasispecies. Molecular breeding of quasispecies containing colonizer individuals, under regimes allowing more than one replicative cycle, is a strategy to select the fittest competitors among the colonizers. A slow-growing cell culture-adapted hepatitis A virus strain was employed as a model for this strategy. Using genomic selection in two regions predictive of efficient translation, the internal ribosome entry site and the VP1-coding region, high-fitness minority colonizer individuals were identified in a population adapted to conditions of artificially-induced cellular transcription shut-off. Molecular breeding of this population with a second one, also adapted to transcription shut-off and showing an overall colonizer phenotype, allowed the selection of a fast-growing population of great biotechnological potential
Acrylic resins in wet white
Content:
The purpose of this paper is to study the influence of acrylic resins on the properties of the hide when added in the pickling-tanning stage of a wet white process.
Among retanning products, acrylic resins are very frequently used because they lend very good properties to the hide on account of their high affinity for chromium. When applied during chrome tanning, these
resins provide the hides with high fullness, due to the strong interaction of the carboxylate groups with chromium.
Extensive bibliography is available on the application of acrylic resins in wet blue, where it is observed that the properties they provide to the hides depend basically on the type of monomers and molecular weight. However, less information is found when these products are applied in wet white tanning.
In this study, 9 resins with different molecular weights and different monomer compositions were selected.
Resins were applied to pelt leathers of Spanish origin split at 3.5 mm. Hides were cut along the backbone. A standard process was applied to the left halves and the same process adding the resin was applied to the right halves. The resin was added after adjusting the salt of the bath and before adding the pickling acids.
The COD was measured before and after adding formic and sulfuric acid, and the shrinkage temperature and the degree of whiteness of the tanned hide were assessed. Hides were retanned and fatliquored with a standard process, and degree of softness, thickness, color intensity and organoleptic properties (fluffiness, compactness and grain tightness) were assessed. Leather shrinkage under temperature was also assessed, and images of leather sections were obtained by scanning electron microscopy (SEM).
While acrylic resins did not increase shrinkage temperature, they did fix and/or deposit themselves in the interfibrillary spaces of the hide; indeed, highly reduced COD values after acidification in the pickling stage were observed. This study shows that homopolymeric acrylic resins provided fuller and fluffier hides, while the rest of resins practically did not improve the physical and organoleptic properties of the hides.
Take-Away:
Homopolymeric acrylic resins provided full er and fluffier hides, while the rest of resins practically did not improve the physical and organoleptic properties of the hides
Wet white tanning improvemen
Prevalence of contagious and environmental mastitis-causing bacteria in bulk tank milk and its relationships with milking practices of dairy cattle herds in São Miguel Island (Azores)
This study aimed to assess the degree of contamination of bulk tank milk (BTM) by Staphylococcus spp. and coliform bacteria and to identify major milking practices that help perpetuate them in dairy cattle herds in São Miguel Island. In July 2014, BTM was sampled and a survey concerning local milking practices was conducted on 100 herds. Semi quantitative multiplex polymerase chain reaction detected coagulase-negative staphylococci, Escherichia coli, Staphylococcus aureus, and other coliform bacteria (Klebsiella oxytoca, Klebsiella pneumoniae, andSerratia marcescens) in 100, 75, 59, and 35 % of BTM, respectively. According to multivariable univariate models, on herds not using hot water for cleaning the milking machine and teat liners, there was at least 3.4 more odds (P<0.01) to have S. aureus or coliform bacteria contamination in BTM. The likelihoodoffinding S.aureus inBTMwas higher(P<0.001)on herds without high hygiene during milking, when milking mastitic cows at the end, on abrupt cessation of milking at dry-off, and official milk control implementation. The glove use also favored (odds ratio (OR) 5.8; P<0.01)thedetection ofcoliformbacteriainBTM.Poormilkingpracticesidentified in this study should be avoided in order to decrease S. aureus and coliform bacteria contamination of BTM. Other factors
associated with milk quality in São Miguel Island also should be further investigated
Structural analysis on mutation residues and interfacial water molecules for human TIM disease understanding
10.1186/1471-2105-14-S16-S11BMC Bioinformatics14SUPPL16-BBMI
Dental calculus and isotopes provide direct evidence of fish and plant consumption in Mesolithic Mediterranean
In this contribution we dismantle the perceived role of marine resources and plant foods in the subsistence economy of Holocene foragers of the Central Mediterranean using a combination of dental calculus and stable isotope analyses. The discovery of fish scales and flesh fragments, starch granules and other plant and animal micro-debris in the dental calculus of a Mesolithic forager dated to the end of the 8th millenium BC and buried in the Vlakno Cave on Dugi Otok Island in the Croatian Archipelago demonstrates that marine resources were regularly consumed by the individual together with a variety of plant foods. Since previous stable isotope data in the Eastern Adriatic and the Mediterranean region emphasises that terrestrial-based resources contributed mainly to Mesolithic diets in the Mediterranean Basin, our results provide an alternative view of the dietary habits of Mesolithic foragers in the Mediterranean region based on a combination of novel methodologies and data
- …
