272 research outputs found

    The 2012 Nucleic Acids Research Database Issue and the online Molecular Biology Database Collection

    Get PDF
    The 19th annual Database Issue of Nucleic Acids Research features descriptions of 92 new online databases covering various areas of molecular biology and 100 papers describing recent updates to the databases previously described in NAR and other journals. The highlights of this issue include, among others, a description of neXtProt, a knowledgebase on human proteins; a detailed explanation of the principles behind the NCBI Taxonomy Database; NCBI and EBI papers on the recently launched BioSample databases that store sample information for a variety of database resources; descriptions of the recent developments in the Gene Ontology and UniProt Gene Ontology Annotation projects; updates on Pfam, SMART and InterPro domain databases; update papers on KEGG and TAIR, two universally acclaimed databases that face an uncertain future; and a separate section with 10 wiki-based databases, introduced in an accompanying editorial. The NAR online Molecular Biology Database Collection, available at http://www.oxfordjournals.org/nar/database/a/, has been updated and now lists 1380 databases. Brief machine-readable descriptions of the databases featured in this issue, according to the BioDBcore standards, will be provided at the http://biosharing.org/biodbcore web site. The full content of the Database Issue is freely available online on the Nucleic Acids Research web site (http://nar.oxfordjournals.org/)

    PRIDE Inspector: a tool to visualize and validate MS proteomics data

    Get PDF
    PRIDE Inspector thus provides a user-friendly, comprehensive tool for the browsing, inspection, and evaluation of data in the PRIDE database, or in a compatible standard file format. As such, we believe that PRIDE Inspector will substantially increase the ability of researchers, editors and peer-reviewers to explore, review, evaluate, and reuse proteomics data.This work was supported by the Wellcome Trust (grant number WT085949MA) and EMBL core funding. R.G.C. is supported by EU FP7 grant SLING (grant number 226073). J.A.V. is supported by the EU FP7 grants LipidomicNet (grant number 202272) and ProteomeXchange (grant number 260558). A.F. was partially supported by the Spanish network COMBIOMED (RD07/0067/0006, ISCIII-FIS). L.M. would like to acknowledge support from the EU FP7 PRIME-XS grant (grant number 262067)

    The PRIDE database and related tools and resources in 2019: improving support for quantification data

    No full text
    The PRoteomics IDEntifications (PRIDE) database (https://www.ebi.ac.uk/pride/) is the world's largest data repository of mass spectrometry-based proteomics data, and is one of the founding members of the global ProteomeXchange (PX) consortium. In this manuscript, we summarize the developments in PRIDE resources and related tools since the previous update manuscript was published in Nucleic Acids Research in 2016. In the last 3years, public data sharing through PRIDE (as part of PX) has definitely become the norm in the field. In parallel, data re-use of public proteomics data has increased enormously, with multiple applications. We first describe the new architecture of PRIDE Archive, the archival component of PRIDE. PRIDE Archive and the related data submission framework have been further developed to support the increase in submitted data volumes and additional data types. A new scalable and fault tolerant storage backend, Application Programming Interface and web interface have been implemented, as a part of an ongoing process. Additionally, we emphasize the improved support for quantitative proteomics data through the mzTab format. At last, we outline key statistics on the current data contents and volume of downloads, and how PRIDE data are starting to be disseminated to added-value resources including Ensembl, UniProt and Expression Atlas

    Parkinson's disease plasma biomarkers: An automated literature analysis followed by experimental validation

    Get PDF
    Diagnosis of Parkinson's disease (PD) is currently assessed by the clinical evaluation of extrapyramidal signs. The identification of specific biomarkers would be advisable, however most studies stop at the discovery phase, with no biomarkers reaching clinical exploitation. To this purpose, we developed an automated literature analysis procedure to retrieve all the background knowledge available in public databases. The bioinformatic platform allowed us to analyze more than 51,000 scientific papers dealing with PD, containing information on 4121 proteins. Out of these, we could track back 35 PD-related proteins as present in at least two published 2-DE maps of human plasma. Then, 9 different proteins (haptoglobin, transthyretin, apolipoprotein A-1, serum amyloid P component, apolipoprotein E, complement factor H, fibrinogen γ, thrombin, complement C3) split into 32 spots were identified as a potential diagnostic pattern. Eventually, we compared the collected literature data to experimental gels from 90 subjects (45 PD patients, 45 non-neurodegenerative control subjects) to experimentally verify their potential as plasma biomarkers of PD

    Application of BRET to monitor ligand binding to GPCRs

    Get PDF
    Bioluminescence resonance energy transfer (BRET) is a well-established method for investigating protein-protein interactions. Here we present a BRET approach to monitor ligand binding to G protein–coupled receptors (GPCRs) on the surface of living cells made possible by the use of fluorescent ligands in combination with a bioluminescent protein (NanoLuc) that can be readily expressed on the N terminus of GPCRs

    ProteomeScout: A repository and analysis resource for post-translational modifications and proteins

    Get PDF
    ProteomeScout (https://proteomescout.wustl.edu) is a resource for the study of proteins and their post-translational modifications (PTMs) consisting of a database of PTMs, a repository for experimental data, an analysis suite for PTM experiments, and a tool for visualizing the relationships between complex protein annotations. The PTM database is a compendium of public PTM data, coupled with user-uploaded experimental data. ProteomeScout provides analysis tools for experimental datasets, including summary views and subset selection, which can identify relationships within subsets of data by testing for statistically significant enrichment of protein annotations. Protein annotations are incorporated in the ProteomeScout database from external resources and include terms such as Gene Ontology annotations, domains, secondary structure and non-synonymous polymorphisms. These annotations are available in the database download, in the analysis tools and in the protein viewer. The protein viewer allows for the simultaneous visualization of annotations in an interactive web graphic, which can be exported in Scalable Vector Graphics (SVG) format. Finally, quantitative data measurements associated with public experiments are also easily viewable within protein records, allowing researchers to see how PTMs change across different contexts. ProteomeScout should prove useful for protein researchers and should benefit the proteomics community by providing a stable repository for PTM experiments

    Using implicit equations of parametric curves and surfaces without computing them: Polynomial algebra by values

    Get PDF
    The availability of the implicit equation of a plane curve or of a 3D surface can be very useful in order to solve many geometric problems involving the considered curve or surface: for example, when dealing with the point position problem or answering intersection questions. On the other hand, it is well known that in most cases, even for moderate degrees, the implicit equation is either difficult to compute or, if computed, the high degree and the big size of the coefficients makes extremely difficult its use in practice. We will show that, for several problems involving plane curves, 3D surfaces and some of their constructions (for example, offsets), it is possible to use the implicit equation (or, more precisely, its properties) without needing to explicitly determine it. We replace the computation of the implicit equation with the evaluation of the considered parameterizations in a set of points. We then translate the geometric problem in hand, into one or several generalized eigenvalue problems on matrix pencils (depending again on several evaluations of the considered parameterizations). This is the so-called “polynomial algebra by values” approach where the huge polynomial equations coming from Elimination Theory (e.g., using resultants) are replaced by big structured and sparse numerical matrices. For these matrices there are well-known numerical techniques allowing to provide the results we need to answer the geometric questions on the considered curves and surfaces

    Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses

    Get PDF
    Converting carcinomas in benign oncocytomas has been suggested as a potential anti-cancerstrategy. One of the oncocytoma hallmarks is the lack of respiratory complex I (CI). Herewe use genetic ablation of this enzyme to induce indolence in two cancer types, andshow this is reversed by allowing the stabilization of Hypoxia Inducible Factor-1 alpha(HIF-1α). We further show that on the long run CI-deficient tumors re-adapt to their inabilityto respond to hypoxia, concordantly with the persistence of human oncocytomas. Wedemonstrate that CI-deficient tumors survive and carry out angiogenesis, despite theirinability to stabilize HIF-1α. Such adaptive response is mediated by tumor associated mac-rophages, whose blockage improves the effect of CI ablation. Additionally, the simultaneouspharmacological inhibition of CI function through metformin and macrophage infiltrationthrough PLX-3397 impairs tumor growth in vivo in a synergistic manner, setting the basisfor an efficient combinatorial adjuvant therapy in clinical trials
    corecore