2,138 research outputs found

    Saline Aquifer CO2 Storage (SACS2). Final report, geological characterisation of the Utsira Sand reservoir and caprocks (Work Area 1)

    Get PDF
    This report summarises the results and highlights the main findings of SACS Work Area 1, the geological and reservoir characterisation of the Utsira Sand and its caprock. For more detailed technical information on each topic, the reader is directed to the relevant SACS Technical Reports and, in particular, two earlier Work Area 1 interim reports, Holloway et al. (1999) and Chadwick et al. (2000). The Utsira Sand comprises a basinally-restricted deposit of Mio-Pliocene age forming a clearly defined seismic unit, pinching out to east and west, and seismically distinct from overlying and underlying strata.The reservoir is highly elongated, extending for more than 400 km from north to south and between 50 and 100 km from east to west, with an area of some 26100 km2. Its eastern and western limits are defined by stratigraphical lap-out, to the southwest it passes laterally into shaly sediments, and to the north it occupies a narrow channel deepening towards the More Basin. Locally, particularly in the north, depositional patterns are quite complex with some isolated depocentres, and lesser areas of non-deposition within the main depocentre. The top Utsira Sand surface generally varies relatively smoothly, mainly in the range 550 to 1500 m, but mostly from 700 to 1000 m. The base of the sand is more irregular, disturbed by diapirism of the underlying shales. Isopachs of the reservoir sand show two main depocentres. One is in the south, around Sleipner, where thicknesses range up to more than 300 m. The second depocentre lies some 200 km to the north of Sleipner. Here the Utsira Sand is locally 200 m thick, with an underlying sandy unit adding further to the total reservoir thickness. Macroscopic and microscopic analysis of core and cuttings samples of the Utsira Sand show that it consists of a largely uncemented fine-grained sand, with medium and occasional coarse grains. The grains are predominantly angular to sub-angular and consist primarily of quartz with some feldspar and shell fragments. Sheet silicates are present in small amounts (a few percent). The sand is interpreted as being deposited by mass flows in a marine environment in water depths of 100 m or more. The porosity of the Utsira Sand core ranges generally from 27% to 31%, but reaches values as high as 42% Regional log porosities are quite uniform, in the range 35 to 40% over much of the reservoir. Geophysical logs show a number of peaks on the -ray, sonic and neutron density logs, and also on some induction and resistivity logs. These are interpreted as mostly marking thin (~1m thick) intrareservoir shale layers. The shale layers constitute important permeability barriers within the reservoir sand, and have proved to have a significant effect on CO2 migration through, and entrapment within, the reservoir. The proportion of clean sand in the total reservoir thickness varies generally from about 0.7 to nearly 1.0. The caprock succession overlying the Utsira reservoir is rather variable, and can be divided into three main units. The Lower Seal forms a shaly basin-restricted unit, some 50 to 100 m thick. The Middle Seal mostly comprises prograding sediment wedges of Pliocene age, dominantly shaly in the basin centre, but coarsening into a sandier facies both upwards and towards the basin margins. The Upper Seal comprises Quaternary strata, mostly glacio-marine clays and glacial tills. The Lower Seal extends well beyond the area currently occupied by the CO2 injected at Sleipner and seems to be providing an effective seal at the present time. Cuttings samples comprise dominantly grey clay silts or silty clays. Most are massive although some show a weak sedimentary lamination. XRD analysis typically reveal quartz (30%), undifferentiated mica (30%), kaolinite (14%), K-feldspar (5%), calcite (4%), smectite (4%), albite (2%), chlorite (1%), pyrite (1%) and gypsum (1%) together with traces of drilling mud contamination. The clay fraction is generally dominated by illite with minor kaolinite and traces of chlorite and smectite. The cuttings samples are classified as non-organic mudshales and mudstones. Although the presence of small quantities of smectite may invalidate its predictions, XRD-determined quartz contents suggest displacement pore throat diameters in the range 14 to 40 nm. Such displacement pore throat diameters are consistent with capillary entry pressures of between about 2 and 5.5 MPa capable of trapping a CO2 column several hundred metres high. In addition, the predominant clay fabric with limited grain support resembles caprocks which are stated in the literature to be capable of supporting a column of 35 API oil greater than 150 m in height. Empirically, therefore, the caprock samples suggest the presence of an effective seal at Sleipner, with capillary leakage of CO2 unlikely to occur. Around and east of the injection point, a layer of sand, 0 - 50 m thick, lies close to the base of the Lower Seal and is termed the Sand-wedge. The geometry of this unit is likely to prove important in determining the long-term migration behaviour of the CO2. Fluid flow in the Utsira Sand, based on limited pressure measurements and basin-modelling, is likely to be low, in the range 0.3 – 4 metres per year, depending on assumed permeabilities. The total pore-space within the Utsira Sand is estimated at 6.05 x 1011 m3. However not all of this can necessarily be utilised for CO2 storage. The simplest assumption is that long-term storage of CO2 can only be accomplished in structural traps at the top of the reservoir. A detailed study around Sleipner indicates that 0.3% of the reservoir porosity is actually situated within structural closures such as this. In practical terms moreover, with a small number of injection wells, it is unlikely that all of the small traps could be utilised in any case. Around Sleipner the most realistic estimate of the pore-space situated within accessible closed structures is just 0.11% of the total pore-volume. On the other hand, trapping of CO2 beneath the intra-reservoir shales could significantly increase realisable storage volumes, particularly if it encouraged dissolution of CO2 into the groundwater. Similarly trapping of CO2 in the Sand-wedge, as well as beneath the top of the Utsira Sand, will increase the overall storage capacity significantly. In conclusion, the theoretical storage capacity of the Utsira Sand is very high, but how much of this can be utilised in reality is uncertain, and a function of several complex parameters. Migration models have been constructed with 30 x 106 m3 of CO2, injected into the Utsira Sand (approximating to the expected final injected mass of 20 million tonnes). They show that if the CO2 is trapped at the top of the Utsira Sand it will migrate generally northwestward, reaching a maximum distance from the injection site of about 12 km. However, if the CO2 is trapped within the Sand-wedge, migration is less well constrained, being northwards then northeastwards. Data limitations to the east of the injection point preclude quantitative estimates of the maximum migration distance in this case

    First detection of NH3 (1,0 - 0,0) from a low mass cloud core: On the low ammonia abundance of the rho Oph A core

    Full text link
    Odin has successfully observed the molecular core rho Oph A in the 572.5 GHz rotational ground state line of ammonia, NH3 (J,K = 1,0 - 0,0). The interpretation of this result makes use of complementary molecular line data obtained from the ground (C17O and CH3OH) as part of the Odin preparatory work. Comparison of these observations with theoretical model calculations of line excitation and transfer yields a quite ordinary abundance of methanol, X(CH3OH) = 3e-9. Unless NH3 is not entirely segregated from C17O and CH3OH, ammonia is found to be significantly underabundant with respect to typical dense core values, viz. X(NH3) = 8e-10.Comment: 4 pages, 2 figures, 2 tables, to appear in Astron. Astrophys. Letter

    Saline Aquifer CO2 Storage phase 2 (SACS2) : a demonstration project at the Sleipner Field : work area 1 (Geology). Progress report 1 April to 31 December 2000

    Get PDF
    1.1 Summary · Preliminary depth and thickness maps produced of Utsira Sand over its entire subsurface extent. · Total Utsira reservoir storage volume estimated. · Potential storage volume in traps estimated around Sleipner. · Preliminary map of caprock around Sleipner produced. · Seismic amplitude anomalies mapped in caprock around Sleipner. · Samples of caprock obtained and preliminary analysis made. · Core from possible caprock analogue at Ekofisk examined and analysed. · 2-D basin modelling carried out to assess major controls on the regional fluid flow regime. Task 1.3 Stratigraphy and structure of the Greater Sleipner Area The reprocessed CNST82RE survey has been loaded. Interpretation of the Utsira Sand transferred onto the reprocessed data and extended onto previously unavailable seismic lines. Transferred reprocessed CNST82RE dataset to GEUS. Received additional Norwegian well information from GEUS. This completed the initial Greater Sleipner interpretation

    Submillimeter Emission from Water in the W3 Region

    Full text link
    We have mapped the submillimeter emission from the 1(10)-1(01) transition of ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km/s; however, some positions in the map show a single strong line at -43 km/s. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page

    Breed-Specific Hematological Phenotypes in the Dog: A Natural Resource for the Genetic Dissection of Hematological Parameters in a Mammalian Species

    Get PDF
    Remarkably little has been published on hematological phenotypes of the domestic dog, the most polymorphic species on the planet. Information on the signalment and complete blood cell count of all dogs with normal red and white blood cell parameters judged by existing reference intervals was extracted from a veterinary database. Normal hematological profiles were available for 6046 dogs, 5447 of which also had machine platelet concentrations within the reference interval. Seventy-five pure breeds plus a mixed breed control group were represented by 10 or more dogs. All measured parameters except mean corpuscular hemoglobin concentration (MCHC) varied with age. Concentrations of white blood cells (WBCs), neutrophils, monocytes, lymphocytes, eosinophils and platelets, but not red blood cell parameters, all varied with sex. Neutering status had an impact on hemoglobin concentration, mean corpuscular hemoglobin (MCH), MCHC, and concentrations of WBCs, neutrophils, monocytes, lymphocytes and platelets. Principal component analysis of hematological data revealed 37 pure breeds with distinctive phenotypes. Furthermore, all hematological parameters except MCHC showed significant differences between specific individual breeds and the mixed breed group. Twenty-nine breeds had distinctive phenotypes when assessed in this way, of which 19 had already been identified by principal component analysis. Tentative breed-specific reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis. This study represents the first large-scale analysis of hematological phenotypes in the dog and underlines the important potential of this species in the elucidation of genetic determinants of hematological traits, triangulating phenotype, breed and genetic predisposition

    What we talk about when we talk about "global mindset": managerial cognition in multinational corporations

    Get PDF
    Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
    corecore