1,456 research outputs found
The moral technical imaginaries of internet convergence in an American television network
How emergent technologies are imagined, discussed, and implemented reveals social morality about how society, politics, and economics should be organized. For the television industry in the United States, for instance, the development of internet “convergence” provoked the rise of a new discourse about participatory democracy as well as the hopes for lucrative business opportunities. The simultaneity of technical, moral, and social ordering defines the “moral technical imaginary.” Populating this concept with ethnographic and historical detail, this article expands the theory of the moral technical imaginary with information from six years of participant observation, interviews, and employment with Current TV, an American-based television news network founded by Vice President Al Gore to democratize television production. This chapter explores the limits of political participation and morality when faced with neoliberal capitalism
Impact of altitude on power output during cycling stage racing
Purpose The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour. Methods Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP) and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000m (3000m) according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin. Results Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5–600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005) during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001) while racing \u3e3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p \u3c 0.001) during racing at moderate-high altitude compared with the race simulation near sea-level. Conclusion A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitude
Growth dynamics and the evolution of cooperation in microbial populations
Microbes providing public goods are widespread in nature despite running the
risk of being exploited by free-riders. However, the precise ecological factors
supporting cooperation are still puzzling. Following recent experiments, we
consider the role of population growth and the repetitive fragmentation of
populations into new colonies mimicking simple microbial life-cycles.
Individual-based modeling reveals that demographic fluctuations, which lead to
a large variance in the composition of colonies, promote cooperation. Biased by
population dynamics these fluctuations result in two qualitatively distinct
regimes of robust cooperation under repetitive fragmentation into groups.
First, if the level of cooperation exceeds a threshold, cooperators will take
over the whole population. Second, cooperators can also emerge from a single
mutant leading to a robust coexistence between cooperators and free-riders. We
find frequency and size of population bottlenecks, and growth dynamics to be
the major ecological factors determining the regimes and thereby the
evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure
Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system
This study investigated the performance of the portable Cortex Metamax 3B (MM3B) automated gas analysis system during both simulated and human exercise using adolescents. Repeated measures using a Gas Exchange System Validator (GESV) across a range of simulated metabolic rates, showed the MM3B to be adequately reliable (both percentage errors, and percentage technical error of measurements <2%) for measuring expired ventilation (VE), oxygen consumption (VO2), and carbon dioxide production (VCO2). Over a 3 h period, the MM3B was shown to be acceptably stable in measuring gas fractions, as well as VE, VO2, and VCO2 generated by the GESV, especially at moderate and high metabolic rates (drifts <2% and of minor physiological significance). Using eight healthy adolescents during rest, moderate, and vigorous cycle ergometry, the validity of the MM3B was tested against the primary criterion Douglas bag method (DBM) and a secondary criterion machine known to be accurate, the Jaeger Oxycon Pro system. No significant errors in VE were noted, yet the MM3B significantly overestimated both VO2 and VCO2 by approximately 10–17% at moderate and vigorous exercise as compared to the DBM and at all exercise levels compared to the Oxycon Pro. No significant differences were seen in any metabolic variable between the two criterion systems (DBM and Oxycon Pro). It is concluded the MM3B produces acceptably stable and reliable results, but is not adequately valid during moderate and vigorous exercise without some further correction of VO2 and VCO2
Gas turbulence modulation in a two-fluid model for gas-solid flows
Recent rapid progress in the theoretical and experimental study of turbulence modulation has led to greater understanding of the physics of particle-gas turbulence interactions. A new two-fluid model incorporating these advances for relatively dilute gas-solid flows containing high-inertia particles is established. The effect of aerodynamic forces upon the particulate stresses is considered in this kinetic theory-based model, and the influence of the particles on the turbulent gas is addressed: the work associated with drag forces contributes to the gas turbulent energy, and the space occupied by particles restricts the turbulent length scale. The interparticle length scale, which is usually ignored, has been incorporated into a new model for determining the turbulent length scale. This model also considers the transport effect on the turbulent length scale. Simulation results for fully developed steady flows in vertical pipes are compared with a wide range of published experimental data and, generally, good agreement is shown. This comprehensive and validated model accounts for many of the interphase interactions that have been shown to be important
Effect of cylinder deactivation on tribological performance of piston compression ring and connecting rod bearing
Thermo-mixed-hydrodynamics of compression rings and big-end bearings are presented. Frictional losses under normal engine operating conditions for a gasoline engine and those with cylinder deactivation (CDA) are predicted. With CDA, the combustion chamber pressure increases in the active cylinders, whilst some residual pressure remains in the deactivated ones. For the former, the increased in-cylinder temperatures reduce viscous friction, whilst reducing the load carrying capacity, promoting increased boundary interactions. In deactivated cylinders, lower contact temperatures yield increased viscous friction. Overall, a 5% improvement in expended fuel is expected with the application of CDA. However, 10% of these gains are expended due to increased friction. The study demonstrates the need to consider total system effects when introducing new technologies such as CDA
Altruism can proliferate through group/kin selection despite high random gene flow
The ways in which natural selection can allow the proliferation of
cooperative behavior have long been seen as a central problem in evolutionary
biology. Most of the literature has focused on interactions between pairs of
individuals and on linear public goods games. This emphasis led to the
conclusion that even modest levels of migration would pose a serious problem to
the spread of altruism in group structured populations. Here we challenge this
conclusion, by analyzing evolution in a framework which allows for complex
group interactions and random migration among groups. We conclude that
contingent forms of strong altruism can spread when rare under realistic group
sizes and levels of migration. Our analysis combines group-centric and
gene-centric perspectives, allows for arbitrary strength of selection, and
leads to extensions of Hamilton's rule for the spread of altruistic alleles,
applicable under broad conditions.Comment: 5 pages, 2 figures. Supplementary material with 50 pages and 26
figure
Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis
Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.Portuguese Fundacao para Ciencia e Tecnologia (FCT) [PTDC/EXPL/MARBIO/0430/2013]; CCMAR FCT Plurianual financing [UID/Multi/04326/2013]; FCT [SFRH/BD/111226/2015, SFRH/BD/108842/2015, SFRH/BPD/89889/2012]; FCT-IF Starting Grant [IF/01274/2014]info:eu-repo/semantics/publishedVersio
A combined analytical-experimental investigation of friction in cylinder liner inserts under mixed and boundary regimes of lubrication
It is necessary to develop an analytical solution in order to combine predictions with measured tribological parameters and fundamentally understand the mechanism of lubrication in a typical region of engine cycle, using tribometric studies. This paper deals with the development of such a representative approach. An analytical, rather than a numerical approach is expounded, as it is shown to suffice for the purpose of precise time-efficient predictions, which conform well to the measurements. The effect of surface topography, material and operating conditions are ascertained for the representative case of top compression ring—cylinder liner contact at the top dead centre reversal in transition from the compression to power stroke. Stainless steel uncoated surface used as press fit cylinder liners for niche original equipment manufacturer applications are compared with those furnished with a Nickel-Silicon Carbide wear-resistant coating of choice in high performance motorsport
- …