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Abstract 

Recent rapid progress in the theoretical and experimental study of turbulence modulation has 

led to greater understanding of the physics of particle-gas turbulence interactions. In this 

paper we establish a new two-fluid model incorporating these advances for relatively dilute 

gas-solid flows containing high-inertia particles. The effect of aerodynamic forces upon the 

particulate stresses is considered in this kinetic theory-based model, and the influence of the 

particles on the turbulent gas is addressed: the work associated with drag forces contributes to 

the gas turbulent energy, and the space occupied by particles restricts the turbulent length 

scale. The inter-particle length scale, which is usually ignored, has been incorporated into a 

new model for determining the turbulent length scale. This model also considers the transport 

effect on the turbulent length scale. Our simulation results for fully-developed steady flows in 

vertical pipes are compared with a wide range of published experimental data and, generally, 

good agreement is shown. This comprehensive and validated model accounts for many of the 

inter-phase interactions that have been shown to be important.  

 
keywords: gas-solid flows, granular flows, two-fluid model, kinetic theory, turbulence 

modulation, particulate flows 
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Introduction 

Depending on the solid volume fraction, flows of solid particles in a gas can be classified into 

three regimes: “one-way”, “two-way” and “four-way” coupling (Elghobashi, 1994). When 

the solid volume fraction is less than about 10-6, the particles have negligible effect on the gas 

turbulence, which is termed one-way coupling. When the solid volume fraction is larger than 

about 10-6, the particles will either enhance or attenuate the gas turbulence; this is two-way 

coupling. Once the solid volume fraction increases beyond 0.1%, collisions also begin to play 

an important role in the flows, which is called four-way coupling. In a very dense flow the 

carrier gas turbulence may be ignored. However, in the regime of solid volume fraction 

greater than 10-6, but not high enough that the gas turbulence can be neglected, we may have 

to consider not only the collisions between particles but also the turbulent interactions 

between the two phases. This paper examines these issues in this flow regime.  

 

Turbulence modulation 

The modulation of the gas turbulence in particle-laden flows is not well understood. 

However, significant advances, through both experimental measurements and direct 

numerical simulation (DNS), have been achieved towards an appreciation of the mechanisms 

behind this modulation. Many factors, such as particle size, density and volume fraction have 

been identified as relevant. Generally, experimental data show that larger particles (i.e. when 

the ratio of particle diameter to pure gas turbulent length scale, , is greater than about 

0.1) tend to enhance the turbulence and smaller particles (

ild /

1.0/ ≤ild ) attenuate it (Gore and 

Crowe, 1989). This turbulence modulation may be due to, amongst other mechanisms, the 

wakes of particles, the displacement of the flow field by particles, turbulent energy transfer, 

and modification of velocity gradients (Crowe, 1997). Therefore, it is timely to begin 

exploring new turbulence modulation models based on these phenomena. 
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Yuan and Michaelides (1992) argued that the wake is responsible for the 

augmentation of turbulence and the work done on the particles is responsible for the 

attenuation of turbulence. This approach was developed and extended by Yarin and Hetsroni 

(1994), who proposed a more detailed expression for the wake. Bolio and Sinclair (1995) 

adopted the original model of Yuan and Michaelides, and confirmed that the wake enhanced 

gas turbulence. However, it was experimentally observed that turbulent energy may also 

increase when the particle Reynolds number is small and the wakes are negligible 

(Hardalupas et al., 1989). Kenning and Crowe (1997) suggested that the work done by the 

particles on the gas via drag could generate fluid turbulence. Crowe and Gillandt (1998), 

Crowe and Wang (2000) and Crowe (2000) derived and improved a detailed turbulence 

modulation model following the work of Kenning and Crowe (1997). These authors argued 

that the common approach to the derivation of the turbulent kinetic energy balance equation 

(e.g. Louge et al., 1991), which treats the averaged velocity as if it were a local velocity in the 

momentum equations of both phases, is not appropriate. In other words, the turbulent kinetic 

energy equation should be derived from the instantaneous Navier-Stokes equation, which 

does not include a coupling drag force term. Fessler and Eaton (1999) also pointed out that 

previous models which used an extra turbulent energy source or sink to represent the 

influence of the particles did not fully capture the physics of particle-gas interactions.  

Rigorously deriving a turbulence model, even for a single-phase flow, is extremely 

problematic, so all gas turbulence modulation models inevitably require some ad hoc 

assumptions. We can, however, make some general remarks when considering current 

models. As the k-ε model has been successfully and widely used for single-phase flows, it has 

consequently found many advocates in the gas-solid flow community (see, e.g., Mostafa and 

Mongia, 1988; Rizk and Elghobashi, 1989; Thai Van et al., 1994; Bolio and Sinclair, 1995; 

Bolio et al., 1995; Cao and Ahmadi, 1995; Dasgupta et al., 1994, 1998; Neri and Gidaspow, 
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2001). However, the k-equation in these models is physically insufficient, as pointed out by 

Crowe and coworkers. In our previous research (Zhang and Reese, 2001), the k-equation of 

Crowe et al. was numerically tested; however in this model a prescribed turbulence length 

scale is used. Recently, the importance of the inter-particle length scale on the gas turbulence 

has also been experimentally confirmed (Sato et al., 2000), which has always previously been 

neglected in the turbulence modeling. A more rigorous transport equation for the turbulent 

length scale is needed to address the influence of the particles on the turbulent length scale.  

Drawing on experimental results for sediment-laden channel flows, Kovacs (1998) 

argued that the mixing length is restricted by the space occupied by the suspended particles, 

which is not available to the gas phase. From the original concept of the mixing length of the 

gas turbulence, we interpret the presence of particles as inhibiting the free random motion of 

the gas molecular clusters, which leads to a reduction of the turbulent length scale. In this 

paper, we therefore construct a new model which not only accounts for the transport effect 

but also the inter-particle spacing on the turbulent length scale.  

Most previous work simply adopted exactly the same values for the necessary 

turbulence model constants as in single-phase turbulent flow. However, Squires and Eaton 

(1994) have demonstrated that the values of these constants are at least related to the ratio of 

mean particle relaxation time, , to the time scale of large eddies, , and the solid volume 

fraction (using the notation of Peirano and Leckner, 1998). Based on the direct simulation 

results of Squires and Eaton (1994), we address the effect of the solid volume fraction of 

high-inertia particles (i.e. when ) on these essential two-equation turbulent model 

constants.  

xt12

t

tt1

tx t112 >>

 

Particulate stresses 

In a continuum model for a dispersed phase, the particulate stresses are formulated by 
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appropriate constitutive laws. These stresses are generated by direct particle-particle 

interactions and particle random motion. Currently, there are two approaches: traditional 

empirical models, and a kinetic theory of granular flow. The former models are relatively 

straightforward to apply in numerical simulations, but have certain arbitrary adjustable 

parameters. The kinetic theory of granular flow is more rigorous, but can be criticised as 

unsuitable because of the physical difference between a dry (no interstitial gas) granular 

system and a gas-solid two-phase system (Buyevich, 1999). In a gas-solid flow, the particles 

are generally driven by the gas phase via the inter-phase forces. The influence of the gas 

phase on the constitutive laws for the particulate phase is ignored in a kinetic theory of dry 

granular flow, but if the carrier gas can be incorporated this would be a powerful tool for 

obtaining suitable constitutive equations for the dispersed phase. 

Following the pioneering work of Bagnold (1954), Savage and Jeffrey (1981) drew 

comparison between the random motion of particles and that of gas molecules, and borrowed 

ideas from the kinetic theory of gases to model granular flow. Since then, many competing 

theories have been proposed (e.g. Ogawa et al., 1980; Jenkins and Savage, 1983; Lun et al., 

1984; Jenkins and Richman, 1985; Abu-Zaid and Ahmadi, 1990; Gidaspow, 1994). Sinclair 

and Jackson (1989) used the kinetic theory of dry granular flow to model the particulate 

stresses in a gas-solid system, and this has been widely adopted (e.g. Bolio and Sinclair, 

1995; Cao and Ahmadi, 1995; Dasgupta et al., 1994, 1998; Neri and Gidaspow, 2001).  

However, the kinetic theory of dry granular flows may not be appropriate for the particulate 

phase in a relatively dilute gas-solid system. 

The interstitial fluid is often discounted in a kinetic theory model by assuming that the 

random motion of particles is controlled by the inter-particle collisions rather than the 

interstitial fluid flow. This assumption is acceptable if the mean particle relaxation time, , 

is much larger than the mean particle collision time, , and also larger than the time scale of 

xt12

ct2
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large eddies, . However, in a relatively dilute flow with small particles,  is of the same 

order as or (or the time scale associated with particle-wall collisions if it is smaller), and 

the random free motion of the particles will be affected by both the gas turbulent fluctuations 

and its mean flow. In this case, the influence of the gas flow should be incorporated in the 

constitutive formulations for the particulate stresses. Therefore, previous models based on a 

kinetic theory of dry granular flows are not suitable for the relatively dilute flows we examine 

in this paper. 

tt1

ct2

xt12

tt1

The effect of the interstitial fluid has been studied by many researchers (e.g. Ma and 

Ahmadi, 1988; Koch, 1990; Gidaspow, 1994; Balzer et al., 1995; Boelle et al., 1995; Koch 

and Sangani, 1999; Agrawal et al., 2001). Zaichik et al. (1997) proposed a generalized kinetic 

model which accounted for both inter-particle collisions and particle-turbulence interactions 

by using a Boltzmann integral operator and a generalized Fokker-Planck differential operator 

respectively. Peirano and Leckner (1998) derived a competing kinetic theory incorporating 

interstitial gas, based on the work of Jenkins and Richman (1985). If the interstitial gas were 

omitted, their results are identical to the work of Jenkins and Richman (1985) and Lun et al. 

(1984). Although their model is restricted to only slightly inelastic particle-particle collisions, 

it does account for the effect of both the gas fluctuational motion and mean flow on the 

particles. In this paper, we will use the model of Peirano and Leckner for the particulate 

phase to address and numerically assess the gas turbulence effect on the constitutive laws for 

the particulate stresses. As far as the authors are aware this is the first thorough numerical 

examination of the theory proposed by Peirano and Leckner. 

Inelastic collisions between particles cause spatial inhomogeneities in the particulate 

phase flowfield, so, properly, the mesoscopic nature of the gas-solid system should be 

considered. However, here we focus on dilute flows in pipes which are of small enough 

diameter that the spatial inhomogeneity of the particulate phase flow structure can be 
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regarded as small. We therefore assume the fully-developed turbulent gas-solid flows are 

steady and axi-symmetric. The limits of validity of this approach can be ascertained by 

numerical simulation and comparison with a range of experimental data. 

 

Outline of this paper 

We begin with the governing equations for a two-fluid model and then introduce the essential 

components of our model one by one. The inter-phase momentum correlation, i.e. the drag 

force, is modeled by considering the effect of solid particle fluctuations. The gas turbulence 

modulation due to the particles is addressed, and a new two-equation turbulence model is 

introduced which accounts for the effect of inter-particle spacing. The influence of particles 

on the k-ε turbulence model parameters is tackled and the constitutive equations for the 

particulate stresses, which account for the effect of the gas turbulence, are given. Finally, the 

two main competing boundary conditions of the particulate phase are discussed. Our 

numerical simulation results for relatively dilute gas-solid flows in vertical pipes are then 

discussed and compared with experimental data. 

 

The mathematical model 

In a two-fluid model, the governing equations for a dispersed solid phase and a carrier gas 

phase are locally-averaged, and both expressions have the same general form. The 

momentum equations can be given as (Anderson and Jackson, 1967; Jackson, 1997): 

solid phase 

gFU 222222 ρετερε ++⋅∇−∇−= dragP
Dt
D ;             (1) 

gas phase 

dragP
Dt
D FV −⋅∇−∇−= 1111 τερε ,                (2) 
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where subscripts 1 and 2 represent the gas phase and solid phase respectively, i.e. ε1 and ε2 

are the volume fractions of the gas phase and the particulate phase; ρ is the density; τ is the 

stress; U is the averaged velocity of the solid phase; V is the averaged velocity of the gas 

phase; is the averaged drag force; g is the gravitational acceleration. The essence of a 

two-fluid model is accurately to model particulate and gas stresses, τ1 and τ2, and drag force, 

. 

dragF

dragF

 

The drag force 

For a particle moving in a cloud of particles, the particle volume fraction has been shown to 

have an important effect on the drag force (e.g. Wen and Yu 1966; Di Felice 1994). The drag 

force acting on a single particle can be given as ( )uvf −= βdrag , where v is the volume-

averaged gas velocity on the control volume containing only a single particle, and u is the 

instantaneous velocity of the particle. A correction factor f(ε2) is usually adopted to address 

the effect of particle volume fraction on the momentum transfer coefficient, i.e. 

( )2
12

4
3 ε

ρε
β f

d
CD uv −= . Many forms for f(ε2) have been proposed, for example Wen and 

Yu (1966) gave .  65.2
22 )1()( −−= εεf

However, the two-fluid model as derived by Anderson and Jackson (1967) is based on 

a control volume which contains statistically many particles, and the drag force is averaged 

over a number of particles rather than a single particle control volume. Although the voidage 

effect has usually been addressed, the effect of the random motion of the particles has not 

been sufficiently implemented in the model. For example, the widely used phenomenological 

Ergun formula is originally based on observations on a fixed bed where the voidage is the 

main concern. For freely and randomly moving particles in a two-fluid model, not only the 
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particle volume fraction but also the random fluctuational motion of individual particles 

needs to be considered. 

By accounting for the effect of the random motion of particles, we have derived an 

expression for the averaged drag force (Zhang and Reese, 2003): 

)(0 UVF −= βdrag ,                     (3) 

where,  

8.0,
4
3

1
65.2

1
12

0 ≥= − εε
ρε

rD U
d

Cβ ,            (4) 

and β0 is the effective inter-phase momentum transfer coefficient for drag. The mean slip 

velocity, Ur, is 

( )
π
TU r

82 +−= UV ,                   (5) 

which accounts for both the slip of mean velocities between the two phases and the relative 

velocity between the random motion of the particles and the mean flow of the gas. The 

granular temperature T is defined as 3/uu ′⋅′  where u′  is the fluctuational velocity of a 

particle. When using correlations to obtain the drag coefficient in equation (4), an averaged 

particle Reynolds number should be employed, viz. 

μ
ρ dUr

p
1Re = .                      (6) 

In our formulation, the mean relative fluctuational velocity of particles in a control 

volume is accounted for, which is close to π/8T . Although any change in the form of the 

correction factor f(ε2) may well offset the relatively small effect of the random motion of 

particles on the momentum transfer coefficient, this fundamental mechanism still represents a 

physical effect which should be incorporated within any physically-consistent two-fluid 
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modeling methodology. This model has been shown to have an appreciable effect on 

simulation results for benchmark cases (Zhang and Reese 2003).  

 
Gas turbulence modulation 

In the widespread k-ε eddy viscosity turbulence model for a gas phase, the gas effective stress 

consists of a viscosity stress and a Reynolds turbulent stress, i.e.  

ijijt
i

j

j

i
tij kv

x
v

x
v

δρδμμμμτ 11 3
2)(

3
2))(( −⋅∇+−

∂

∂
+

∂
∂

+= ,        (7) 

where μt is the eddy viscosity; the turbulent kinetic energy, k, is vv ′⋅′2/1 , and v  is the 

fluctuational velocity of the gas. The expression for k for a single fluid flow can be derived 

from the Navier-Stokes equations. In a similar way to a single-phase flow, the turbulent 

energy equation for the gas in a two-phase system can be given as:  

′

ερεΔρε
σ
μ

μερερε 111111111 −+
∂
∂′′−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂ kV

x
vv

x
k)(

x
)kV(

x
)k(

t i
j

ji
jk

t

j
j

j

, (8) 

where Δk is a source or sink of turbulent kinetic energy due to the presence of particles, ε is 

the dissipation rate of the kinetic energy and σk is a Prandtl number relating the diffusion of k 

to the eddy viscosity.  

The commonly-used expression for Δk is (e.g. Chen and Wood, 1985; Berlemont et 

al., 1990; Louge et al., 1991) 

( kk 20 −′⋅′=Δ vuβ ).                   (9) 

However, simulations using this model of Δk have been found to underestimate the gas 

kinetic energy somewhat (Louge et al., 1991; Bolio et al., 1995). Other turbulent energy 

generation mechanisms, such as particle wakes, may need to be incorporated (e.g. Yuan and 

Michaelides, 1992; Yarin and Hetsroni, 1994; Bolio and Sinclair, 1995; Sinclair and Mallo, 

1998). Crowe and Gillandt (1998) argued that, in any case, the coupling term is not correctly 
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modeled in equation (9) because the coupling drag force is an averaged value which cannot 

be regarded as a point-value in the derivation of equation (8). Their model asserted, instead, 

)( 120
2

0 3 kTVUk −+−= ββΔ ,                 (10) 

where vu ′⋅′=12k , an estimate for which is given in Zhang and Reese (2001): 

22

2
2

0
12 νρ

β c
r tUk ≈ .                      (11) 

Here,  relates to the auto-correlation of the force experienced by a representative particle. 

If the correlation time is taken to be comparable to the collision interval and the force acting 

on a particle is the drag force, then it is obtained by an averaging process.  

12k

The disagreement between equations (9) and (10) stems from the different averaging 

processes: a volume and temporal double average is used in deriving equation (9) and only 

volume averaging is used in the model of Crowe and Gillandt. Both equations have been 

numerically evaluated in Zhang and Reese (2001), and the model of Crowe and Gillandt has 

shown better overall performance in terms of accuracy. Therefore, we will adopt equation 

(10) with equation (11) in the present paper.  

Although Crowe and Gillandt have rigorously derived a k-equation for gas solid 

flows, they used a prescribed hybrid turbulent dissipation length scale to account for the 

presence of particles, i.e. 

λ
λ
+

=
l

llh ,                       (12) 

where λ is the inter-particle spacing. This approach regards the inter-particle space as an 

important equivalent characteristic turbulence length scale, restricting the turbulent 

fluctuations. A similar idea can also be found in the work of Kovacs (1998). However, the 

transport effects on the turbulent length scale are as important as those on the turbulent 

kinetic energy (Launder and Spalding, 1972). Although the variation of the turbulent length 
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scale, l, needs to be determined by a transport equation, l itself is not necessarily a dependent 

variable.  

Here we propose a new transport equation to solve for the turbulent energy dissipation 

rate, ε. The turbulent length scale, l, can therefore be determined via a new relation to the 

turbulent energy dissipation rate, ε, to account for the effect of the inter-particle length scale. 

In a similar way to that for a single phase flow, the new ε-equation is constructed as: 

      

[ ] .
k

kTVUc
k

c

x
V

x
V

x
V

k
c

xx
)V(

x
)(

t j

i
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⎞
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⎛
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=
∂
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+
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∂

  (13) 

 
where σε is the Prandtl number relating the diffusion of ε to the eddy viscosity, which may be 

given as: 

ερμ μ /2
1kCt = ,                     (14) 

where Cμ is a constant parameter. In previous turbulent modulation models, the turbulent 

length scale, l, is usually the same as in a gas single-phase turbulent flow (e.g. Mostafa and 

Mongia, 1981), i.e. through 

lkC /2/34/3
με = .                     (15) 

However, the importance of inter-particle space to the turbulent length scale has been 

neglected in this equation. Now, we need to incorporate this effect into a new model for the 

turbulent length scale.  

In a mixing length turbulence model, the turbulent length scale is analogous to the 

free path of the random motion of gas molecules. The presence of particles “blocks” the free 

path of gas molecular clusters, leading to a reduced turbulent length scale (Kovacs, 1998). 

Suppose there are n particles each of diameter d in the local element volume of  (ls is the 3
sl
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length scale of this element volume), where n is statistically sufficiently large. The space 

occupied by particles is not available to the gas. This solid-occupied space is given by 

3
2

3

6 slnd επ
= .                      (16) 

If the particles are distributed evenly in the x, y and z directions, then the effective length 

scale can be reduced to: 

se ldnl
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

3
1

23
1 611

π
ε .                (17) 

This can be better illustrated by an example. Suppose there are 1000 particles in the element 

volume, distributed evenly 10×10×10 in the x, y, z directions. In each direction, the 

dimensional space occupied by the particles is 10d in this case (generally, n1/3d). Deducting 

this length scale occupied by the particles from the total available space, we obtain equation 

(17). 

Because the turbulence of the gas will be effectively suppressed at the close-packed 

limit, then the reduction of the turbulence length scale should be normalized by the highest 

solid volume fraction limit in which turbulence disappears. This is common practice in this 

field (see, e.g. Cao and Ahmadi, 1995): an analogous example is the expression for the radial 

distribution function, which is also widely taken to involve the close packed solid volume 

fraction even for very dilute flows (e.g. Neri and Gidaspow, 2001). Because the space 

occupied by the spherical particles is not available to the gas molecular clusters, and the gas 

turbulence is likely to be negligible at solid volume fractions even somewhat below the 

closely-packed limit, the reduced turbulent length scale, lr, becomes 

ll
m

r ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

3
1

2

261
πε

ε ,                   (18) 
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where ε2m represents the random close-packing particle volume fraction, which is 0.64. We 

put forward equation (18) as a suitable physical model in the dilute flow regime examined 

here.  

Therefore, the new relation between turbulent energy dissipation rate and turbulent 

length scale becomes, 

( ) l
k

/

C /

/
m

/ 23

31
22

43

61 πεε
ε μ

−
= .                (19) 

As this equation fails when 2ε  exceeds 0.34, a consequent assumption is that the gas 

turbulence can be ignored at this high solid volume fraction. Equation (19) accounts for the 

effect of particles on the turbulent length scale. In the relatively dilute limit we examine, the 

normalizing effect of the maximum volume fraction is significant. Our model’s sensitivity to 

this parameter will be examined in section 5 below, where the significance of this turbulence 

modulation, even at such small solid volume fractions, will be shown. Anticipating this, we 

contend that the effect of solid volume fraction should be included in a comprehensive and 

mechanistic gas-solid flow model. 

 

The turbulence model parameters 

The last term in equation (13) is an ad hoc parameterization of the effect of particles on ε 

(Squires and Eaton, 1994). All the model constants except c3 are normally adopted straight 

from a single-phase fluid turbulence model. Drawing on the comparative study of Hrenya et 

al. (1995) for single-phase fully-developed steady flows in vertical pipes, the most 

appropriate constants are those proposed by Rodi and Mansour (1993) and Michelassi et al. 

(1993), viz. Cμ=0.09; c1=1.44; c2=1.92; σk =1.3; σε=1.3, which give good agreement with 

single-phase experimental measurements, as shown in figure 1. The constant c3 is a tunable 

parameter which is usually optimized to provide agreement with a specific experiment, 
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varying between 1.0 and 2.0. This may indicate that it could depend on other factors such as 

particle size, density and volume fraction. As Squires and Eaton (1994) reported, generally c2 

and c3 both depend on mass loading and the ratio of particle relaxation time to large eddy 

time scale.  

In a k-ε model, the characteristic time scale of the large eddies, , can be given by tt1

εμ /kC ; the particle relaxation time, , by xt12 rDUCd 12 3/4 ρρ ; and the particle collision time, 

, by ct2 Td /24/ 2 πχε . The radial distribution function, χ, is described here by the 

expression of Lun and Savage (1987), viz. [ ]m
.2

22 /1 εεχ −−= m25ε . For light particles s 

O(1) or less, and mass loading has a strong effect on the value of c2 and c3. But for the 

heavier particles we consider, is O(10) or more and the influence of mass loading on c2 

may be negligible, while c3 decreases with increasing mass loading. Therefore, the value of c2 

will be taken to be the same as in pure gas turbulent flow, but we propose a heuristic variable 

cε3, which is a function of solid volume fraction: 
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to replace c3 in the term in equation (13) for the particle-generated turbulent source or sink. 

While the flow is dilute, the value of cε3 will decrease as the solid volume fraction increases 

towards the random close-packed limit. Because any turbulence model is based on 

hypotheses of turbulent motion and requires empirical input, c3 is such an empirical constant. 

Our modification to c3, as given by equation (20), is based on observations from the DNS 

database of Squires and Eaton (1994) and requires testing. 

At the moment, there are no universal turbulence models available with clearly 

defined values of the parameters. The effect of particles on c3 is always neglected in the 

literature, and its tuned value varies widely from 1.0 to 2.0. The very common and sensible 
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approach is to tune this value for a benchmark case, and then fix and use this value to 

examine other cases to see whether quantitative agreement can still be achieved in these 

different cases. Here, the value of c3=1.95 in equation (20) is obtained by benchmarking 

against a single data set of Tusji et al. (1984). This value is fixed to test Tsuji's other data sets, 

and also the data sets from different experiments (Maeda et al., 1980; Lee and Durst, 1982). 

The solid volume fraction dependent cε3 is then found to vary between 1.4 to 1.7 within 

calculations. 

In each case our new model using cε3 shows good agreement without the need for 

further tuning to agree with each individual case. This may indicate our empirical 

modification of c3 does reflect the particle effect. The sensitivity of our model to the value of 

c3 is shown below in figures 24 and 25, where significantly different predictions for k are 

found for different values of c3 in equation (20). By incorporating the effect of particle 

volume fraction, as given by equation (20), we achieve substantially more accurate and (as 

we only tune a single parameter once) more robust and practical simulation results overall.  

 

The particulate stresses  

The solid stress has been confirmed to be important even in a dilute flow (e.g. Pita and 

Sundaresan, 1991; Dasgupta et al., 1994, 1998). Although the kinetic theory of dry granular 

flow is widely used to describe the solid stress, this has been criticized as being ill-founded 

because, as inter-particle collisions are inelastic, the only state of equilibrium for unforced 

granular flows is that of zero granular temperature (Goldhirsch and Zanetti, 1993; Kadanoff, 

1999). However, in a gas-solid dilute flow, the equilibrium state of the granular solid phase 

depends on the trade-off between inelastic dissipation and particle-gas interactions. The 

interstitial gas will affect the random motion of particles, so that solid phase fluctuations will 

be correlated to the gas fluctuations and influenced by the mean gas flow. Moreover, the 
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inelastic kinetic energy dissipation is small in a relatively dilute flow. As a result, the kinetic 

theory approach could capture a main generating mechanism of the solid stress in a gas-solid 

system, provided the interstitial gas can be properly considered. 

Peirano and Leckner (1998) addressed the turbulent gas effect on the solid stress. 

Here, as in Zhang and Reese (2001) previously, we will adopt their work to model the solid 

stress. For the sake of completeness, we briefly summarise this model as: 

ij
tc

ijkkij SSP ˆ)(2)( 2222222 ψψρεδζτ +−−= ,             (21) 

where the particle normal stress is the same as in the kinetic theory model of granular flow, 

i.e. 

TeP ))1(21( 2222 ++= χερε ;                 (22) 

where ,  and e is the particle-particle collisional 

coefficient of restitution; 
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where )13)(1(
5
2

−+= eeA  and B e= + −
1
5

1 3( )( )e . The interaction time between particle 

motion and gas fluctuations, , where 2/1
112 )1( −+= r
tt Ctt ζβ kUrr 2/3 2=ζ  and Cβ is a 

constant.  

Because the particulate stress depends on the granular temperature, we also need a 

closure equation for the balance of the fluctuational energy: 
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The expression for the fluctuational energy flux, q, is given as in Peirano and Leckner (1998), 

viz. 
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where  and C e e= + −3 1 2 1 52( ) ( ) / D e e= + −( )( ) /1 49 33 100 . Energy dissipation is 

described by 
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π
χρε −= .                 (30) 

So far, no thorough numerical testing of this model has been accomplished. This 

generalized kinetic theory model of the particle phase in a gas-solid two-phase system needs 

to be explored numerically in order to evaluate the impact of gas turbulence on the viscosity 

and diffusion coefficients. We find below (figures 17 and 18) significant improvement on 

previous models which only used the kinetic theory of dry granular flow.  

 

Fully-developed steady flow 

Our new model will be tested on relatively dilute flows of high-inertia particles. To 

summarize the main features of our model: we have introduced a new description of the 

turbulent length scale which addresses the influence both of particles and the transport effect 

⎯ this is given by equations (13), (19). The effect of particles on the turbulence model 
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parameter c3, is proposed in equation (20). Moreover, the recent generalized kinetic theory 

model of Peirano and Leckner (1998) is adopted for the particulate phase, which avoids the 

physical inappropriateness of previous models based on the kinetic theory of dry granular 

flow. The new transport equation for turbulent kinetic energy proposed by Crowe and his 

colleagues has also been incorporated. In addition, our recent work on inter-phase momentum 

and kinetic energy interactions, i.e. Fdrag and k12 respectively, is also used in the present 

model. Together, this new model represents a unique two-fluid approach to gas-solid flows 

and is the most comprehensive to date ⎯ incorporating improved physicality above that of 

previously-published models.  

For a fully-developed, steady, axisymmetric, relatively dilute gas-solid flow in a 

vertical pipe, the governing equations then become, 

Solid phase 

• Momentum equation 
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• Fluctuational energy equation 
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Gas phase 

• Momentum equation 
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• Turbulent kinetic energy equation 
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• Turbulent length scale  
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where u and v represent averaged axial velocities of the particulate and gas phases, 

respectively, and subscripts r and z represent radial and axial components, respectively.  

 

Boundary conditions  

For a gas-solid flow, the particle diameter may not be negligible when compared to the width 

of the gas viscous boundary layer. Therefore, when we set the boundary conditions at the 

wall for the solid phase, we establish a momentum and energy balance at a thin layer of 

particles, the thickness of which may be the same order as that of the gas viscous layer or 

larger. The gas phase boundary condition should also be set on the same thin layer, as 

suggested by Sinclair and Jackson (1989). In addition, the derivation of governing equation 

(2) is based on an element volume containing statistically sufficient number of particles, so 

the length scale of that element volume must be at least the same order as the particle 

diameter. As a result, it is not appropriate to solve the governing equations from the pipe 

center right up to the wall, where a non-slip boundary condition for the gas phase would 

normally be set. Therefore, a high Reynolds number k-ε model is used here with the wall 

functions to determine the boundary values for the gas phase. 

The wall functions for a single-phase flow are valid for flows with small particle 

volume fractions (Kulick et al., 1994). Therefore, we adopt von Karman’s logarithmic law, 

and the magnitude of the slip velocity of gas at the wall is obtained as (Mohammadi and 

Pironneau, 1994), 
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where, 11 /τ~ ρsv = , μρ /~
1vyy =+ , τ1s is the gas shear stress at the wall and y is the 

distance to the wall; K is the von Karman constant (K=0.41) . If a local equilibrium can be 

assumed, i.e. the generation and dissipation of the turbulent kinetic energy is nearly the same, 

the gas turbulent kinetic energy, k, at the near wall region, can be described by  (Louge et al., 

1991; Ferziger and Perić, 2002): 

 0=
∂
∂

r
k .                        (39) 

The boundary condition for ε can be derived by assuming a kinetic energy balance in the 

near-wall region: 

Ky
kC

wall
wall

2/34/3
με = .                    (40) 

The above boundary conditions for the gas phase at the wall region are valid when the first 

grid point is within the logarithmic region, i.e. 20. ≥+y

The collisions between particles and the wall play a significant role in the flow in 

small-diameter pipes, especially for high-inertia particles which do not respond quickly to the 

gas flow. Currently, there are two main competing boundary conditions for the solid phase, 

i.e. those due to Johnson et al. (1990) and Jenkins and Louge (1997).  

Jenkins and Louge (1997) built on the work of Jenkins (1992) by rigorously deriving 

boundary conditions for the stress and fluctuational energy for particle flow over a plane 

frictional wall. Assuming a Maxwellian velocity distribution, they integrated the impulse 

equations for the particle-wall collision. As their derived conditions are empirical-parameter 

free, it is clear that their work is a major step to a mature advanced theory for the boundary 

conditions. However, their boundary conditions also have some shortcomings. A particle-

wall collision will be sliding if 
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where ut and un are the particle translational velocities parallel and normal to the wall, ew is 

the particle-wall coefficient of restitution, μs is the static coefficient of friction, and  ω is the 

particle angular velocity. Only in the limit of all-sliding collisions can a rigorous expression 

for the stress and fluctuational energy flux be derived. However, in real situations, both 

sliding and non-sliding collisions generally occur. As has been stated, Jenkins and Louge 

assumed a Maxwellian velocity distribution, so some of the collisions must be sliding and 

others non-sliding for a finite small μs ⎯ the all-sliding limit can only occur when μs is zero. 

A discontinuity therefore arises in the integral. They also, incidentally, ignore fluctuations in 

the angular velocity. 

Furthermore, although these boundary conditions are analytically-derived, they are 

not without parameters which, in practice, have to be optimized. As Sommerfeld (1992) 

stated, the parameters which affect a particle-wall collision are the particle collision angle, 

the particle translational and rotational velocity before collision, the properties of the particle 

and the wall materials, the particle shape, and the roughness of the wall surface. Of these, the 

particle-wall normal coefficient of restitution is strongly velocity-dependent. Also, the 

coefficient of friction and tangential coefficient of restitution are collision geometry-

dependent and, for a small-diameter pipe, the pattern of particle-wall collisions is likely to 

differ from that for a plane wall. With these difficulties in properly characterizing the 

collisions, as well as the discontinuity in the integral outlined above, the complications 

arising in the necessary averaging process are likely to be substantial. Even if these 

coefficients (particle-wall normal and tangential coefficient of restitution, and coefficient of 

friction) can be assumed as constants, they are hardly measurable. In spite of their clear 

physical meaning, these three parameters have to be tuned in practice.  
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The boundary conditions of Johnson et al. (1990) adopt an alternative approach. 

Although not mathematically rigorous, employing a single specularity coefficient, φ, (which 

is an empirical “tunable” constant) admits flexibility to the boundary conditions, so the 

averaged influences of the geometry of the curved pipe wall and the variety of particle-wall 

collisions can be encapsulated under one parameter. Despite the profile of granular 

temperature being sensitive to this parameter (as shown in figures 22 and 23 below), we can 

ensure comparability of our numerical simulation results by adjusting the specularity 

coefficient for one operational condition then maintaining this singular value for all our 

subsequent simulations. Although the boundary conditions of Johnson et al. are the most 

widely used and tested so far for gas-solid flow modeling, more sophisticated boundary 

conditions are still needed for complex and realistic boundary geometries. 

Here, we summarize the boundary conditions of Johnson et al. (1990). The shear 

stress generated on the thin flow layer (i.e. the control volume) above the wall is  

χεωφρτ Turz 3222 = .                   (42) 

The energy dissipation term is  
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where α and ω are dimensionless proportionality constants of order unity which are given by 

m26ν
πωα == .                      (44) 

The balance of energy requires, 
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In the centerline of the pipe, axisymmetric conditions are applied, i.e. 
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Results and discussion 

In this section we first examine the predictions of our new model. Then we investigate the 

relative importance of the new model components we have introduced, and perform a 

sensitivity analysis on our model parameters. 

Non-intrusive laser Doppler measurements of fully-developed turbulent gas-solid 

flows in a vertical pipe have been reported by Maeda et al. (1980), Lee and Durst (1982) and 

Tsuji et al. (1984). Glass particles with a density of 2590 kgm-3, in glass pipes with internal 

diameters 56mm and 41.8mm, were used by Maeda et al. and Lee and Durst, respectively. 

The experimental data produced by Tsuji et al. is more comprehensive, involving differently-

sized particles, different mass loading ratios and various superficial gas velocities. Latterly, 

Tsuji revisited these data and experimental measurements of the axial fluctuations of the 

particulate phase were published in the work of Bolio et al. (1995). Tsuji et al. used 

polystyrene spheres with a density of 1020 kgm-3 in a pipe with an internal diameter of 30.5 

mm. The ratio of particle-to-gas mass flow rates, i.e. mass loading, m, is up to 4.2.  

The particle-particle and particle-wall collisions are often the major source of 

particulate stresses, but the coefficients of restitution, e and ew respectively, depend on the 

impact velocity and are extremely sensitive parameters. However, reasonably-estimated 

constant values of e and ew can give at least a first order prediction when the collisions are 

nearly elastic in a relatively dilute flow, because in this case the collisions do not contribute 

significantly to the particulate stresses and, as we show below, our simulation results do not 

strongly depend on the coefficients of restitution. Therefore we treat the coefficients of 

restitution as constants within the scope of this paper, with e and ew for the cases of Maeda et 

al. (1980) and Lee and Durst (1982) both taken as 0.94 (Bolio et al. 1995). We adopt e=0.9 

and ew =0.75 for the case of Tsuji et al. (1984), as discussed in Louge et al. (1991) and Bolio 

et al. (1995). 
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Finally, we take the gas density to be 1.2 kgm-3, the specular parameter in the 

boundary conditions, φ, to be 0.008, and the turbulence parameter, c3, in our expression for 

cε3 to be 1.95. These singular values of φ and c3 are obtained once by optimizing to produce 

good agreement with the single set of measurements of Tsuji et al. (1984) for a mass loading 

ratio, m=3.2. They are then kept the same for all the other cases, including Maeda et al. 

(1980) and Lee and Durst (1982). A summary of these parameters is given in Table 1. Bolio 

et al. (1995) chose a smaller value for φ, i.e. 0.002: this difference may stem from the 

different turbulence modulation models used and the lack of any damping effect of the 

interstitial gas on the particulate stresses. 

For fully-developed steady flow in an axi-symmetric pipe, the governing equations 

reduce to the five coupled second-order, non-linear ordinary differential equations and two 

algebraic equations, given in equations (31)-(37). Because the achievement of numerical 

convergence is very sensitive to the initial guess, the equations are decoupled and linearized. 

Finite differences are then used to solve these ordinary differential equations, and 

convergence is rapidly achieved by using an over-relaxation method.  

The first point to note in our numerical results for dilute gas-solid flows is that the 

predicted particle radial segregation is negligible (see figure 2), which agrees with the 

experimental observations of Tsuji et al. (1984), and the simulations of Louge et al. (1991). 

Because a high Reynolds number k-ε model with wall functions is used the solutions do not 

include the viscous sublayer. 

In figures 3-5, the effect of particles on the gas mean velocity can be distinguished. 

Our simulation results are in reasonable agreement with experimental data for the gas 

velocity profiles. Generally, the presence of particles leads to a flatter gas velocity profile. 

Maeda et al. (1980), Lee and Durst (1982) and Tsuji et al. (1984) all observed that the particle 

mean velocity near the wall can be larger than the gas mean velocity. This effect is captured 
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by the present model, and can be understood in terms of the particulate shear stress (Louge et 

al., 1991). Comparing the velocity profiles of figures 4 and 5, it can be seen that the location 

where the particle velocity is predicted to be above the gas velocity is closer to the pipe 

center for smaller particles. This is also confirmed by Tsuji et al. (1984). 

The effect of mass loading on the mean velocity field of both phases is shown in 

figures 6 and 7. In figure 6, the predictions clearly show the gas velocity profile becomes 

flatter with increasing mass loading, which has been experimentally observed by Tsuji et al. 

(1984). Simulation results shown in figure 7 predict the tendency for a smaller mean slip 

velocity between the two phases with increased mass loading, which is in agreement with 

experimental observation. However, our predicted particle velocity profiles are flatter than 

the measured ones, which is perhaps due to our assumption of uniform particle size. In real 

situations there is a particle size distribution: smaller particles respond to the gas flow at the 

pipe center more easily and larger ones are more likely to lag behind in the region near the 

wall (Mathiesen et al., 2000).  

Figures 8-13 show the impact of inter-phase interactions on the fluctuations of both 

phases. The effect of particles on gas fluctuations is shown in figures 8-11 and 13 under 

different mass loadings and different particle sizes. The gas turbulent energy profiles for 200 

μm diameter particles at different mass loadings can be seen in figures 8, 9 and 11. In 

comparison to the corresponding pure gas flow, the particles attenuate the gas turbulence. 

The 500 μm diameter particles augment the gas turbulence as can be seen in figure 10, 

especially at the pipe center, and the greater the mass loading the more the gas turbulence is 

enhanced. Particles of all sizes examined cause the profiles of the gas turbulent energy to 

flatten. Different sized particles have substantially different effects on the turbulence, as seen 

in figure 13 comparing particle-laden and particle-free flows under the operating conditions 

of Lee and Durst (1982). The attenuation associated with 200μm diameter particles, and the 

26 



enhancement associated with 500μm particles, is consistent with the experimental 

observations. This confirms the general conclusion given by Gore and Crowe (1989) that 

smaller particles will attenuate turbulence while larger ones enhance it. As with previous 

models, e.g. Louge et al. (1991) and Bolio et al. (1995) where they predicted the general 

trend of the turbulence modulation, the quantitative discrepancies with experimental data  are 

still large. This may be due to the anisotropic nature of turbulence in a real pipe flow (Sinclair 

and Mallo, 1998). 

Figures 8, 9 and 12 show comparisons of the measured and predicted r.m.s axial 

velocity fluctuations of particulate phase. The fluctuations of the particulate phase are larger 

than those of the gas phase, especially at small mass loading, as seen in figure 9. Increasing 

mass loading will attenuate the fluctuations, which can be understood in terms of “the free 

path” of the particle motion. From these figures, we can see the fluctuations are overpredicted 

for m=4.2 and underestimated for m=1.3, 1.0. As shown in figures 22 and 23 later, the 

specularity coefficient φ has an effect on the particle fluctuations. Bolio and Sinclair (1995) 

also showed the same trend. Therefore, this result may indicate that, under the formulation of 

this model, the specularity parameter may need to incorporate the effect of solid volume 

fraction.  

Having shown the general utility of our new model, we now turn to examine the 

relative importance of its constituent parts. Figures 14-16 compare the various turbulent 

kinetic energy source and sink terms in order to determine the most important factor in our 

model which influences turbulence modulation. Figure 14 compares the radial variation of 

the turbulent energy additional source terms due to the presence of particles, and the viscous 

dissipation term in equation (35). Except in the wall region, it can be seen that the turbulent 

energy in the pipe is mainly generated from the work done by the drag force, i.e. 2
0 VU −β . 

Because turbulent energy generated by a velocity gradient is dominant in the wall region, the 
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turbulent energy dissipation, ε1ρ1ε, is larger than δk, which is )( 120
2

0 3 kT −+− ββ VU . This 

additional energy source, i.e. 2
0 VU −β , is the major difference between Crowe’s new 

model and previous commonly-used models. Figures 15 and 16 also confirm that the source 

term due to interaction with the particles, rather than velocity gradient, contributes more to 

the turbulence, except in the wall region where the contribution from the velocity gradient 

becomes more important. 

Due to the complex nature of gas-solid flows, only a complete investigation of every 

individual model component can distinguish the importance of the competing mechanisms 

involved. The objectives of figures 17 and 18 are: i) to determine whether inter-particle 

collisions or particle random fluctuational motion contributes most to the particulate 

viscosity, ψ2, and the diffusion coefficient, κ2 in these relatively dilute flows; ii) to determine 

the impact of gas turbulence on the particulate viscosity, ψ2, and the diffusion coefficient, κ2. 

Here, if the interstitial gas is ignored, as in the standard kinetic theory of dry granular flow, 

the results are denoted as “without gas”; otherwise as “with gas”. First, we see in these 

figures that the collisional contribution to the particulate viscosity, ψ2, and the diffusion 

coefficient, κ2, is very small. Therefore, the turbulent components, , and , are 

dominating for these relatively dilute flows. Second, the effect of the turbulent gas on the 

particulate viscosity and diffusion coefficient is very significant. The interstitial gas plays a 

damping role which reduces both the particulate viscosity and the diffusion coefficient. The 

reduction of viscosity will lead to a decrease in particulate stresses. Therefore, interactions 

between the two phases play a more important role, while inter-particle collisions are less 

influential in these relatively dilute flows. As a result, ignoring the gas turbulence effect on 

the constitutive equations for the particulate phase, as previous models have done, 

t
2ψ t

2κ
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significantly over-predicts ψ2 and κ2, and is not appropriate for these flows. Only in a dense 

flow may the particulate stresses relating to the interstitial gas be regarded as negligible.  

Because any turbulence model inevitably introduces some empiricism, a thorough test 

and validation of these parameters is essential to any two-fluid model. A sensitivity analysis 

of our model to these parameters is shown in figures 19-26. The effect of the particle-particle 

coefficient of restitution on the axial velocity fluctuations of both phases is shown in figures 

19-21. We see that this coefficient has a negligible effect on the gas turbulence but has a 

greater influence on the granular temperature, for a mass loading ratio, m=3.2. For the smaller 

mass loading ratio, m=1.0, shown in figure 21, we see the effect of the coefficient of 

restitution on the granular temperature is less. Generally, the sensitivity of solutions to the 

coefficient of restitution, which has been observed in dense flows, is not significant for a 

relatively dilute flow. This result lends support to our earlier assumption of a constant 

coefficient of restitution. 

Figures 22 and 23 show the effect of the specularity coefficient on the fluctuations of 

both phases. The impact of this parameter is relatively insignificant to the gas phase but 

significant to the particulate phase. Increasing the value of the specularity coefficient is found 

to increase particle fluctuations. The turbulence model constant, c3, used in our expression for 

cε3, is examined in figures 24 and 25. This parameter has a negligibly small influence on 

fluctuations of the particulate phase but has significant effect on gas fluctuations. If we turn 

off the modification on c3 and maintain a constant value of c3=1.95, the prediction of the gas 

turbulent kinetic energy profile is found to be at least one order of magnitude smaller. The 

most important influence on the fluctuational motion of the gas and particle phases is the 

inter-particle length scale, which is addressed via equation (18).  In figure 26, we can see that 

even the small difference of not including the normalization with ε2m in equation (18) leads to 

very different predictions of the gas turbulent kinetic energy. Furthermore, if we turn off this 
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modification entirely (which means that the inter-particle space effect on turbulence length 

scale is then excluded) we find a major discrepancy in the calculation for the turbulent kinetic 

energy profile, as expected. Therefore, it is most important to assess accurately how the inter-

particle length scale can be incorporated into a turbulent model. Our results are consistent 

with the general observation that for a solid volume fraction even as low as 10-6 the particles 

will affect the gas turbulence (Elghobashi, 1994). The present model is a practical attempt at 

tackling the effect of the inter-particle length scale. 

 

Summary and conclusions 

We have proposed a new model for gas turbulence modulation in gas-solid flows, and 

examined the interstitial gas influence on the particulate stresses. Our simulation results are 

generally in reasonable quantitative, and good qualitative, agreement with published 

experimental data. We may draw the following conclusions: 

• The inter-particle length scale has a significant effect on the gas turbulence, and this 

should be incorporated in a turbulence model. 

• The work done due to the drag force is responsible for enhancing the gas turbulence. 

• The carrier gas turbulence plays an important role in determining the particulate stresses, 

so that ignoring the carrier gas in the constitutive equations for the particulate phase, as 

previous models have done, is not appropriate for relatively dilute gas-solid flows. 

• The effect of particles on turbulence parameters needs to be evaluated and tested in order 

to facilitate gas-solid system simulation and design.  

 

The present turbulence modulation model is based on an isotropic assumption, which is its 

most significant limitation. Sheen et al. (1993) have demonstrated the anisotropic nature of 

gas turbulence in pipe flow that needs to be addressed in a future more sophisticated model. 
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Table 1. The parameters used in the simulations 

Parameters Tsuji et al. (1984) Maeda et al. (1980) Lee and Durst (1982)

Pipe diameter, mm 30.5 56 41.8 

Particle diameters, μm 200, 500 136 100, 200 

Particle density, kgm-3 1020 2590 2590 

Model constants, Cμ, c1, 
c2, c3, σk, σε 

0.09, 1.44, 1.92, 
1.95, 1.3, 1.3 

0.09, 1.44, 1.92, 
1.95, 1.3, 1.3 

0.09, 1.44, 1.92, 
1.95, 1.3, 1.3 

Inter-particle coefficient 
of restitution, e 

0.9 0.94 0.94 

Particle-wall coefficient 
of restitution, ew 

0.75 0.94 0.94 

Specularity coefficient, φ 0.008 0.008 0.008 
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FIGURE CAPTIONS 

 

Figure 1. Radial variations of (a) gas normalized axial velocity, v/vc, and (b) gas normalized 

r.m.s. fluctuational axial velocity, v′/vc, for a pure gas flow. The gas axial velocity at the pipe 

center, vc=13.4 ms-1. Other parameters as in Tsuji et al. (1984) 

 
Figure 2. Typical radial variation of particle volume fraction, ε2, in this case for 200 μm 

diameter particles at a mass loading ratio, m=1.0. Other parameters as in Tsuji et al. (1984). 

 
Figure 3. Radial variations of normalized axial velocity of both phases, v/vc and u/vc. The 

mass loading ratio is, m=0.3, Re=22,000 and the particles are 136 μm diameter. Other 

parameters as in Maeda et al. (1980).  

 
Figure 4. Radial variations of normalized axial velocity of the two phases, v/vc and u/vc. The 

particles are 100 μm diameter; the gas axial velocity at the pipe center, vc=5.7 ms-1; the mean 

solid volume fraction, ε2=5.8×10
-4

; and other parameters as in Lee and Durst (1982). 

 
Figure 5. Radial variations of normalized axial velocity of the two phases, v/vc and u/vc. The 

particles are 200 μm diameter; the gas axial velocity at the pipe center, vc=5.84 ms-1; the 

mean solid volume fraction, ε2=6.3×10
-4

; and other parameters as in Lee and Durst (1982). 

 
Figure 6. Radial variations of gas normalized axial velocity, v/vc. The particles are 200 μm 

diameter. The gas axial velocities at the pipe center, vc=10.8, 11.9 and 13.1 ms-1 for mass 

loading ratios, m=3.2, 1.9 and 0.5, respectively. Other parameters as in Tsuji et al. (1984). 

 
Figure 7. Radial variations of normalized axial velocity of the particulate phase, u/vc. The 

particles are 200 μm diameter. The gas axial velocities at the pipe center, vc=14.6, 17.4 and 
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18.9 ms-1 for mass loading ratios, m=4.2, 2.1 and 1.0, respectively. Other parameters as in 

Tsuji et al. (1984). 

 
Figure 8. Radial variations of normalized axial r.m.s fluctuational velocity of the two phases, 

v′/vc and u′/vc. The particles are 200 μm diameter. The gas axial velocity at the pipe center, 

vc=10.8 ms-1, and mass loading ratio, m=3.2. Other parameters as in Tsuji et al. (1984). 

 
Figure 9. Radial variations of normalized axial r.m.s fluctuational velocity of the two phases, 

v′/vc and u′/vc. The particles are 200 μm diameter. The gas axial velocity at the pipe center, 

vc=12.8 ms-1, and mass loading ratio, m=1.3. Other parameters as in Tsuji et al. (1984). 

 
Figure 10. Radial variations of gas normalized axial r.m.s fluctuational velocity, v′/vc. The 

particles are 500 μm diameter. The gas axial velocities at the pipe center, vc=10.7, 11.4 and 

13.3 ms-1 for mass loading ratios, m=3.4, 2.9 and 1.3 respectively. Other parameters as in 

Tsuji et al. (1984). 

 
Figure 11. Radial variations of gas normalized axial r.m.s fluctuational velocity, v′/vc. The 

particles are 200 μm diameter. The gas axial velocities at the pipe center and mass loading 

ratios are (a) vc=11.9 ms-1, m=1.9; and (b) vc=12.8 ms-1, m=0.9. Other parameters as in Tsuji 

et al. (1984). 

 
Figure 12. Radial variations of normalized axial r.m.s fluctuational velocity of the particulate 

phase, u′/vc. The particles are 200 μm diameter. The gas axial velocities at the pipe center and 

mass loading ratios are (a) vc=14.6 ms-1, m=4.2; and (b) vc=18.9 ms-1, m=1.0. Other 

parameters as in Tsuji et al. (1984). 

 
Figure 13. Simulation results for radial variations of gas normalized r.m.s. fluctuational axial 

velocity, v′/vc. The gas axial velocity at the pipe center, vc=5.84 ms-1. For particle-laden flow, 
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the mass loading, m=1.4, and the particles are 200 μm and 500 μm diameter. Other 

parameters as in Lee and Durst (1982). 

 
Figure 14. Comparison of radial variation of normalized turbulent energy source and sink 

terms: , ( ) kk /2
1 VU −=δ kTk /32 =δ , kkk /123 −=δ and kk 0βερεδ /114 −= . The particle 

diameter is 200 μm and mass loading ratio, m=1.0. Other parameters as in Tsuji et al. (1984). 

 
Figure 15 Comparison of normalized turbulent main generation term, due to particles, 

k/k 2VU −=δ  and the viscous dissipation term, k/ 011 βερεδε −= : a) m=1.0 and b) m=3.2, 

for 200 μm particles. Other parameters as in Tsuji et al. (1984). 

 
Figure 16. Radial variation of the ratio of the sink, , to the source, k/cs

2
112 ερεδε =

kkTcg /3 12
2

03 εβδε ε ⎥⎦
⎤

⎢⎣
⎡ −+−= )(VU , in equation (36), . Particle diameter is 

200 μm and mass loading ratio, m=3.2. Other parameters as in Tsuji et al. (1984). 

gs / δεδεε =∗

 
Figure 17. Comparison of radial variations of particulate viscosity components: a) turbulent 

(superscript t) and b) collisional (superscript c). The viscosities are normalized by gas 

viscosity, i.e. and . Particles are 200 μm diameter and mass loading 

ratio, m=3.2. Other parameters as in Tsuji et al. (1984). 

μψψ /2
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Figure 18. Comparison of radial variations of particulate diffusion coefficient components: a) 

turbulent (superscript t) and b) collisional (superscript c). The coefficients are normalized by 

the gas diffusion coefficient, i.e. and , where the diffusion coefficient, 

κ, for gas is 0.21 m2s-1 (the value for air at atmosphere pressure and 20°C). Particles are 200 

μm diameter and mass loading ratio, a) m=1.0 and b) m=3.2. Other parameters as in Tsuji et 

al. (1984). 
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Figure 19. Simulation results of radial variation of gas normalized r.m.s. fluctuational axial 

velocity, v′/vc, for different inter-particle coefficients of restitution: e=1.0, 0.9 and 0.8. The 

mean particle diameter, d=200 μm, other parameters as in Tsuji et al. (1984). The solid mass 

loading ratio, m=3.2; the gas axial velocity at the pipe center, vc=10.8 ms-1.  

 
Figure 20. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in the particulate phase, u′/vc, for different inter-particle coefficients of restitution: 

e=1.0, 0.9 and 0.8. The mean particle diameter, d=200 μm, other parameters as in Tsuji et al. 

(1984). The solid mass loading ratio, m=3.2; the gas axial velocity at the pipe centre, vc=10.8 

ms-1.  

 
Figure 21. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in the particulate phase, u′/vc, for different inter-particle coefficients of restitution: 

e=1.0, 0.9 and 0.8. The mean particle diameter, d=200 μm, other parameters as in Tsuji et al. 

(1984). The solid mass loading ratio, m=1.0; the gas axial velocity at the pipe centre, vc=18.9 

ms-1.  

 
Figure 22. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in a) the gas phase, v′/vc, and b) the particulate phase, u′/vc, for different specularity 

coefficients: φ=0.012, 0.008, 0.004 and 0.002. The particle diameter, d=200 μm, other 

parameters as in Tsuji et al. (1984). The solid mass loading ratio, m=0.9; the gas axial 

velocity at the pipe center, vc=12.8 ms-1.  

 
Figure 23. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in the particulate phase, u′/vc, for different specularity coefficients: φ=0.012, 0.008, 

0.004 and 0.002. The mean particle diameter, d=200 μm, other parameters as in Tsuji et al. 
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(1984). The solid mass loading ratio, m=4.2; the gas axial velocity at the pipe center, vc=14.6 

ms-1.  

 
Figure 24. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in a) the gas phase, v′/vc, and b) the particulate phase, u′/vc, for different turbulent 

constant, c3=1.85, 1.95, and 2.05. The solid mass loading ratio, m=0.3, Re=22,000, and the 

particle diameter, d=136 μm. Other parameters as in Maeda et al. (1980).  

 
Figure 25. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in a) the gas phase, v′/vc, and b) the particulate phase, u′/vc, for different turbulent 

constant, c3=1.85, 1.95, and 2.05. The mean solid volume fraction, ε2=5.8×10-4, the gas 

velocity at the pipe center, vc=5.7 ms-1, and the particle diameter, d=100 μm. Other 

parameters as in Lee and Durst (1984).  

 
Figure 26. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in a) the gas phase, v′/vc, and b) the particulate phase, u′/vc, comparing the effect of 

including the solid volume fraction at closed packing. The mean solid volume fraction, 

ε2=5.8×10-4, the gas velocity at the pipe center, vc=5.7 ms-1, and the particle diameter, d=100 

μm. Other parameters as in Lee and Durst (1984).  

 

43 



 

 

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

r/R

v/
v c

model
Tsuji et al.

(a) 

 

44 



 
 

 

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

r/R

v′ /v
c

(b) 

model
Tsuji et al.

 

 

Figure 1. Radial variations of (a) gas normalized axial velocity, v/vc, and (b) gas normalized 

r.m.s. fluctuational axial velocity, v′/vc, for a pure gas flow. The gas axial velocity at the pipe 

center, vc=13.4 ms-1. Other parameters as in Tsuji et al. (1984). 
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Figure 2. Typical radial variation of particle volume fraction, ε2, in this case for 200 μm 

diameter particles at a mass loading ratio, m=1.0. Other parameters as in Tsuji et al. (1984). 
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Figure 3. Radial variations of normalized axial velocity of both phases, v/vc and u/vc. The 

mass loading ratio, m=0.3, Re=22,000 and the particles are 136 μm diameter. Other 

parameters as in Maeda et al. (1980).  
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Figure 4. Radial variations of normalized axial velocity of the two phases, v/vc and u/vc. The 

particles are 100 μm diameter; the gas axial velocity at the pipe center, vc=5.7 ms-1; the mean 

solid volume fraction, ε2=5.8×10
-4

; and other parameters as in Lee and Durst (1982). 
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Figure 5. Radial variations of normalized axial velocity of the two phases, v/vc and u/vc. The 

particles are 200 μm diameter; the gas axial velocity at the pipe center, vc=5.84 ms-1; the 

mean solid volume fraction, ε2= 6.3×10
-4

; and other parameters as in Lee and Durst (1982). 
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Figure 6. Radial variations of gas normalized axial velocity, v/vc. The particles are 200 μm 

diameter. The gas axial velocities at the pipe center, vc=10.8, 11.9 and 13.1 ms-1 for mass 

loading ratios, m=3.2, 1.9 and 0.5, respectively. Other parameters as in Tsuji et al. (1984). 
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Figure 7. Radial variations of normalized axial velocity of the particulate phase, u/vc. The 

particles are 200 μm diameter. The gas axial velocities at the pipe center, vc=14.6, 17.4 and 

18.9 ms-1 for mass loading ratios, m=4.2, 2.1 and 1.0, respectively. Other parameters as in 

Tsuji et al. (1984). 
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Figure 8. Radial variations of normalized axial r.m.s fluctuational velocity of the two phases, 

v′/vc and u′/vc. The particles are 200 μm diameter. The gas axial velocity at the pipe centre, 

vc=10.8 ms-1, and mass loading ratio, m=3.2. Other parameters as in Tsuji et al. (1984). 
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Figure 9. Radial variations of normalized axial r.m.s fluctuational velocity of the two phases, 

v′/vc and u′/vc. The particles are 200 μm diameter. The gas axial velocity at the pipe center, 

vc=12.8 ms-1, and mass loading ratio, m=1.3. Other parameters as in Tsuji et al. (1984). 
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Figure 10. Radial variations of gas normalized axial r.m.s fluctuational velocity, v′/vc. The 

particles are 500 μm diameter. The gas axial velocities at the pipe center, vc=10.7, 11.4 and 

13.3 ms-1 for mass loading ratios, m=3.4, 2.9 and 1.3 respectively. Other parameters as in 

Tsuji et al. (1984). 
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Figure 11. Radial variations of gas normalized axial r.m.s fluctuational velocity, v′/vc. The 

particles are 200 μm diameter. The gas axial velocities at the pipe center and mass loading 

ratios are (a) vc=11.9 ms-1, m=1.9; and (b) vc=12.8 ms-1, m=0.9. Other parameters as in Tsuji 

et al. (1984). 
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Figure 12. Radial variations of normalized axial r.m.s fluctuational velocity of the particulate 

phase, u′/vc. The particles are 200 μm diameter. The gas axial velocities at the pipe center and 

mass loading ratios are (a) vc=14.6 ms-1, m=4.2; and (b) vc=18.9 ms-1, m=1.0. Other 

parameters as in Tsuji et al. (1984). 
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Figure 13. Simulation results for radial variations of gas normalized r.m.s. fluctuational axial 

velocity, v′/vc. The gas axial velocity at the pipe center, vc=5.84 ms-1. For particle-laden flow, 

the mass loading, m=1.4, and the particles are 200 and 500 μm diameter. Other parameters as 

in Lee and Durst (1982). 
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Figure 14. Comparison of radial variation of normalized turbulent energy source and sink 

terms: , ( ) kk /2
1 VU −=δ kTk /32 =δ , kkk /123 −=δ and kk 0βερεδ /114 −= . The particle 

diameter is 200 μm and mass loading ratio, m=1.0. Other parameters as in Tsuji et al. (1984). 
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Figure 15 Comparison of normalized turbulent main generation term, due to particles, 

k/k 2VU −=δ  and the viscous dissipation term, k/ 011 βερεδε −= : a) m=1.0 and b) m=3.2, 

for 200 μm particles. Other parameters as in Tsuji et al. (1984). 

62 



 

 

 

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

r/R

ε*

 

 

Figure 16. Radial variation of the ratio of the sink, , to the source, k/cs
2

112 ερεδε =

kkTcg /3 12
2

03 εβδε ε ⎥⎦
⎤

⎢⎣
⎡ −+−= )(VU , in equation (36), . Particle diameter is 

200 μm and mass loading ratio, m=3.2. Other parameters as in Tsuji et al. (1984). 
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Figure 17. Comparison of radial variations of particulate viscosity components: a) turbulent 

(superscript t) and b) collisional (superscript c). The viscosities are normalized by gas 

viscosity, i.e. and . Particles are 200 μm diameter and mass loading 

ratio, m=3.2. Other parameters as in Tsuji et al. (1984). 
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Figure 18. Comparison of radial variations of particulate diffusion coefficient components: a) 

turbulent (superscript t) and b) collisional (superscript c). The coefficients are normalized by 

the gas diffusion coefficient, i.e. and , where the diffusion coefficient, 

κ, for gas is 0.21 m2s-1 (the value for air at atmosphere pressure and 20°C). Particles are 200 

μm diameter and mass loading ratio, a) m=1.0 and b) m=3.2. Other parameters as in Tsuji et 

al. (1984). 
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Figure 19. Simulation results of radial variation of gas normalized r.m.s. fluctuational axial 

velocity, v′/vc, for different inter-particle coefficients of restitution: e=1.0, 0.9 and 0.8. The 

mean particle diameter, d=200 μm, other parameters as in Tsuji et al. (1984). The solid mass 

loading ratio, m=3.2; the gas axial velocity at the pipe center, vc=10.8 ms-1.  
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Figure 20. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in the particulate phase, u′/vc, for different inter-particle coefficients of restitution: 

e=1.0, 0.9 and 0.8. The mean particle diameter, d=200 μm, other parameters as in Tsuji et al. 

(1984). The solid mass loading ratio, m=3.2; the gas axial velocity at the pipe centre, vc=10.8 

ms-1.  
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Figure 21. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in the particulate phase, u′/vc, for different inter-particle coefficients of restitution: 

e=1.0, 0.9 and 0.8. The mean particle diameter, d=200 μm, other parameters as in Tsuji et al. 

(1984). The solid mass loading ratio, m=1.0; the gas axial velocity at the pipe centre, vc=18.9 

ms-1.  
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Figure 22. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in a) the gas phase, v′/vc, and b) the particulate phase, u′/vc, for different specularity 

coefficients: φ=0.012, 0.008, 0.004 and 0.002. The particle diameter, d=200 μm, other 

parameters as in Tsuji et al. (1984). The solid mass loading ratio, m=0.9; the gas axial 

velocity at the pipe center, vc=12.8 ms-1.  
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Figure 23. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in the particulate phase, u′/vc, for different specularity coefficients: φ=0.012, 0.008, 

0.004 and 0.002. The mean particle diameter, d=200 μm, other parameters as in Tsuji et al. 

(1984). The solid mass loading ratio, m=4.2; the gas axial velocity at the pipe center, vc=14.6 

ms-1.  
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Figure 24. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in a) the gas phase, v′/vc, and b) the particulate phase, u′/vc, for different turbulent 

constant, c3=1.85, 1.95, and 2.05. The solid mass loading ratio, m=0.3, Re=22,000, and the 

particle diameter, d=136 μm. Other parameters as in Maeda et al. (1980).  
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Figure 25. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in a) the gas phase, v′/vc, and b) the particulate phase, u′/vc, for different turbulent 

constant, c3=1.85, 1.95, and 2.05. The mean solid volume fraction, ε2=5.8×10-4, the gas 

velocity at the pipe center, vc=5.7 ms-1, and the particle diameter, d=100 μm. Other 

parameters as in Lee and Durst (1984).  
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Figure 26. Simulation results of radial variation of normalized r.m.s. fluctuational axial 

velocity in a) the gas phase, v′/vc, and b) the particulate phase, u′/vc, comparing the effect of 

including the solid volume fraction at closed packing. The mean solid volume fraction, 

ε2=5.8×10-4, the gas velocity at the pipe center, vc=5.7 ms-1, and the particle diameter, d=100 

μm. Other parameters as in Lee and Durst (1984).  
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