10 research outputs found

    Splitting the South: China and India’s Divergence in International Environmental Negotiations

    Get PDF
    International environmental negotiations often involve conflicts between developed and developing countries. However, considering environmental cooperation in a North-South dichotomy obscures important variation within the Global South, particularly as emerging economies become more important politically, economically, and environmentally. This article examines change in the Southern coalition in environmental negotiations, using the recently concluded Minamata Convention on Mercury as its primary case. Focusing on India and China, we argue that three key factors explain divergence in their positions as the negotiations progressed: domestic resources and regulatory politics, development constraints, and domestic scientific and technological capacity. We conclude that the intersection between scientific and technological development and domestic policy is of increasing importance in shaping emerging economies’ engagement in international environmental negotiations. We also discuss how this divergence is affecting international environmental cooperation on other issues, including the ozone and climate negotiations

    Use of a global model to understand speciated atmospheric mercury observations at five high-elevation sites

    Get PDF
    © 2015 Author(s). Atmospheric mercury (Hg) measurements using the Tekran® analytical system from five high-elevation sites (1400-3200 m elevation), one in Asia and four in the western US, were compiled over multiple seasons and years, and these data were compared with the GEOS-Chem global model. Mercury data consisted of gaseous elemental Hg (GEM) and "reactive Hg" (RM), which is a combination of the gaseous oxidized (GOM) and particulate bound ( < 2.5 μm) (PBM) fractions as measured by the Tekran® system. We used a subset of the observations by defining a "free tropospheric" (FT) data set by screening using measured water vapor mixing ratios. The oxidation scheme used by the GEOS-Chem model was varied between the standard run with Br oxidation and an alternative run with OH-O 3 oxidation. We used this model-measurement comparison to help interpret the spatio-temporal trends in, and relationships among, the Hg species and ancillary parameters, to understand better the sources and fate of atmospheric RM. The most salient feature of the data across sites, seen more in summer relative to spring, was that RM was negatively correlated with GEM and water vapor mixing ratios (WV) and positively correlated with ozone (O 3 ), both in the standard model and the observations, indicating that RM was formed in dry upper altitude air from the photo-oxidation of GEM. During a free tropospheric transport high RM event observed sequentially at three sites from Oregon to Nevada, the slope of the RM/GEM relationship at the westernmost site was-1020 ± 209 pg ng -1 , indicating near-quantitative GEM-to-RM photochemical conversion. An improved correlation between the observations and the model was seen when the model was run with the OH-O3 oxidation scheme instead of the Br oxidation scheme. This simulation produced higher concentrations of RM and lower concentrations of GEM, especially at the desert sites in northwestern Nevada. This suggests that future work should investigate the effect of Br-and O 3 -initiated gas-phase oxidation occurring simultaneously in the atmosphere, as well as aqueous and heterogeneous reactions to understand whether there are multiple global oxidants for GEM and hence multiple forms of RM in the atmosphere. If the chemical forms of RM were known, then the collection efficiency of the analytical method could be evaluated better.Taiwan. Environmental Protection Administratio

    Evaluating EDGARv4.tox2 speciated mercury emissions ex-post scenarios and their impacts on modelled global and regional wet deposition patterns

    Get PDF
    Speciated mercury gridded emissions inventories together with chemical transport models and concentration measurements are essential when investigating both the effectiveness of mitigation measures and the mercury cycle in the environment. Since different mercury species have contrasting behaviour in the atmosphere, their proportion in anthropogenic emissions could determine the spatial impacts. In this study, the time series from 1970 to 2012 of the EDGARv4.tox2 global mercury emissions inventory are described; the total global mercury emission in 2010 is 1772 tonnes. Global grid-maps with geospatial distribution of mercury emissions at a 0.1° × 0.1° resolution are provided for each year. Compared to the previous tox1 version, tox2 provides updates for more recent years and improved emissions in particular for agricultural waste burning, power generation and artisanal and small-scale gold mining (ASGM) sectors. We have also developed three retrospective emissions scenarios based on different hypotheses related to the proportion of mercury species in the total mercury emissions for each activity sector; improvements in emissions speciation are seen when using information primarily from field measurements. We evaluated them using the GEOS-Chem 3-D mercury model in order to explore the influence of speciation shifts, to reactive mercury forms in particular, on regional wet deposition patterns. The reference scenario S1 (EDGARv4.tox2_S1) uses speciation factors from the Arctic Monitoring and Assessment Programme (AMAP); scenario S2 (“EPA_power”) uses factors from EPA's Information Collection Request (ICR); and scenario S3 (“Asia_filedM”) factors from recent scientific publications. In the reference scenario, the sum of reactive mercury emissions (Hg-P and Hg 2+ ) accounted for 25.3% of the total global emissions; the regions/countries that have shares of reactive mercury emissions higher than 6% in total global reactive mercury are China+ (30.9%), India+ (12.5%) and the United States (9.9%). In 2010, the variations of reactive mercury emissions amongst the different scenarios are in the range of −19.3 t/yr (China+) to 4.4 t/yr (OECD_Europe). However, at the sector level, the variation could be different, e.g., for the iron and steel industry in China reaches 15.4 t/yr. Model evaluation at the global level shows a variation of approximately ±10% in wet deposition for the three emissions scenarios. An evaluation of the impact of mercury speciation within nested grid sensitivity simulations is performed for the United States and modelled wet deposition fluxes are compared with measurements. These studies show that using the S2 and S3 emissions of reactive mercury, can improve wet deposition estimates near sources

    Assessing the health and economic impacts of mercury : when does model complexity matter?

    No full text
    Thesis (S.M. in Technology Policy)--Massachusetts Institute of Technology, Engineering Systems Division, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 109-125).Mercury is a toxic pollutant that endangers human and ecosystem health. Especially potent in the form of methyl mercury, exposure is known to lead to adverse neurological effects, and, a growing body of evidence suggests, cardiovascular ones. Mercury's health impacts have economic consequences, and benefit-cost analyses focusing on these health benefits are used to motivate regulatory action in the United States and elsewhere. However, many existing valuation studies of the health impacts of mercury have substantial limitations, both from a scientific and economic perspective. Because they do not fully model mercury's path from emissions to impacts, they do not fully reflect the spatial and temporal dimensions of the mercury problem. In addition, many do not consider uncertain, but potentially policy-relevant health effects like cardiovascular disease. This thesis develops an integrated assessment framework that more completely represents mercury's emissions-to-impacts path, and then evaluates its policy relevance. The assessment framework integrates chemical transport modelling, exposure and health impacts modelling, and general equilibrium modelling of the US economy. As a case study, the framework is used to evaluate the benefits of the Mercury and Air Toxics Standards-a recent US regulation that targets emissions from coal-fired power plants-until 2050. I estimate the annual benefit of MATS to be 13 million 2005 USD, compared to a scenario that includes stringent air quality policy, and 414 million 2005 USD when compared to a no policy scenario. I find that the estimate is highly sensitive to uncertainties along the emissions-to-impacts path-in particular, dose-response parameterization, ecosystem lag times, and discount rate. The analysis suggests that given the large ranges of uncertainty involved, more fully representing the emissions-to-impact chain does not lead to substantially different aggregate benefits estimates, compared to those existing in the literature. However, because this approach does provide more insight into the controlling influences behind benefits, it can inform decisions about where policies should be implemented, and of what type, as well as best practices for transparently assessing mercury-related policies.by Amanda Giang.S.M.in Technology Polic

    Tracking mercury and other pollutants from policy to impacts

    No full text
    Thesis: Ph. D. in Engineering Systems, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, 2017.Cataloged from PDF version of thesis.Includes bibliographical references (pages 143-167).Persistent and bioaccumulative toxins like mercury pose unique challenges for environmental governance. The complexity of their movement through coupled social, technological, and natural systems can make it difficult to trace their path from emissions to wider impacts, as emissions and impacts can be separated both in time and space. This separation can make it difficult to assess whether different management and policy proposals will effectively reduce negative impacts. Focusing primarily on mercury, this dissertation explores how we can use interdisciplinary tools and approaches-from atmospheric modelling to community engaged research-to better trace this path from policy to human impacts, in support of environmental decision-making at multiple levels of governance. Combining simulation modelling, statistical, and qualitative approaches, it considers three aspects of the path from policy to impacts: how policy translates into emissions changes, how emissions changes translate into changes in environmental concentrations and fluxes, and finally how these environmental concentrations and fluxes impact the well-being of human communities. Taken together, the three studies highlight the need to take into account how social, technical, and natural systems interact, as well as the uncertainty, variability, and pluralism that exist within them, in our efforts to manage these toxic pollutants. In the first study, I investigate the social and technical factors that affect the domestic implementation of a global environmental treaty (the United Nations Minamata Convention on Mercury) in major emitter countries in Asia, and their potential implications for emissions and global transport using a scenario-based modelling approach. I project that the benefit of avoided emissions and deposition over Asia are large, even when considering a scenario where the Convention allows large flexibility in implementation. These benefits are primarily driven by India, where even modest improvements in mercury capture are projected to result in large emissions decreases given future economic growth. I also find that climate change policies that promote the transitioning away from fossil may be as effective as strict end-of-pipe pollution control approaches for mitigating mercury emissions. In the second study, driven by interests from community research partners in the Great Lakes region-an area vulnerable to mercury pollution-I use chemical transport modelling experiments to explore the conditions under which regional and global policy change can be statistically detected by wet deposition monitoring networks. I find that, given the magnitude of expected emissions decreases, detecting policy-related decreases in wet deposition in the Great Lakes region on the decadal scale will be challenging as the magnitude of noise-in particular interannual meteorological variability-can exceed this signal. These results suggest that these variabilities need to be better quantified and taken into account in both the design of policies for effectiveness and evaluation of policy compliance. In the third study, I investigate the role that university-community partnerships can play in the long-term management of persistent pollutants through an empirical case study of the Superfund Research Program, which has recently required that grantees engage communities impacted by the hazardous substances that they study. I argue that community engagement in practice often supports a community building function-engagement operates as a space where knowledge about pollutants and shared identities of being impacted by these pollutants can be co-produced. Because persistent pollutants can implicate new people across time and space, often in ways that are difficult for those affected to discern, I suggest that supporting the constitution of what I call communities of concern is a critical way that university-based researchers can support the long-term management of persistent pollutants. I propose a conceptual framework to characterize and assess the functions that academic partners can perform in supporting the constitution of communities of concern around persistent pollutants. Further, I call attention to the institutional conditions that can enable this work to continue within academic contexts.by Amanda Giang.Ph. D. in Engineering System

    Benefits of mercury controls for the United States

    No full text
    Mercury pollution poses risks for both human and ecosystem health. As a consequence, controlling mercury pollution has become a policy goal on both global and national scales. We developed an assessment method linking global-scale atmospheric chemical transport modeling to regional-scale economic modeling to consistently evaluate the potential benefits to the United States of global (UN Minamata Convention on Mercury) and domestic [Mercury and Air Toxics Standards (MATS)] policies, framed as economic gains from avoiding mercury-related adverse health endpoints. This method attempts to trace the policies-to-impacts path while taking into account uncertainties and knowledge gaps with policy-appropriate bounding assumptions. We project that cumulative lifetime benefits from the Minamata Convention for individuals affected by 2050 are 339billion(2005USD),witharangefrom339 billion (2005 USD), with a range from 1.4 billion to 575billioninoursensitivityscenarios.CumulativeeconomywidebenefitstotheUnitedStates,realizedby2050,are575 billion in our sensitivity scenarios. Cumulative economy-wide benefits to the United States, realized by 2050, are 104 billion, with a range from 6millionto6 million to 171 billion. Projected Minamata benefits are more than twice those projected from the domestic policy. This relative benefit is robust to several uncertainties and variabilities, with the ratio of benefits (Minamata/MATS) ranging from ≈1.4 to 3. However, we find that for those consuming locally caught freshwater fish from the United States, rather than marine and estuarine fish from the global market, benefits are larger from US than global action, suggesting domestic policies are important for protecting these populations. Per megagram of prevented emissions, our domestic policy scenario results in US benefits about an order of magnitude higher than from our global scenario, further highlighting the importance of domestic action.National Science Foundation (U.S.). (Awards 1053648 and 131755)Natural Sciences and Engineering Research Council of CanadaMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences (J. H. and E. V. Wade Fund)Massachusetts Institute of Technology. Sociotechnical Systems Reseach Center (Stokes Fund

    Impacts of the Minamata Convention on Mercury Emissions and Global Deposition from Coal-Fired Power Generation in Asia

    No full text
    We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and use the GEOS-Chem model to calculate global mercury deposition. Where technology requirements in the Convention are flexibly defined, under a global energy and development scenario that relies heavily on coal, we project ∼90 and 150 Mg·y–1 of avoided power sector emissions for China and India, respectively, in 2050, compared to a scenario in which only current technologies are used. Benefits of this avoided emissions growth are primarily captured regionally, with projected changes in annual average gross deposition over China and India ∼2 and 13 μg·m–2 lower, respectively, than the current technology case. Stricter, but technologically feasible, mercury control requirements in both countries could lead to a combined additional 170 Mg·y–1 avoided emissions. Assuming only current technologies but a global transition away from coal avoids 6% and 36% more emissions than this strict technology scenario under heavy coal use for China and India, respectively.National Science Foundation (U.S.) (NSF Atmospheric Chemistry (no. 1053648))National Science Foundation (U.S.) (Dynamics of Coupled Natural and Human Systems (no. 1313755))Massachusetts Institute of Technology. Sociotechnical Systems Research Center (MIT SSRC Stokes Fellowship)Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences (MIT J.H. and E.V. Wade fund

    Mercury benefits of climate policy in China: Addressing the Paris Agreement and the Minamata Convention simultaneously

    No full text
    National commitments under the Paris Agreement on climate change interact with other global environmental objectives, such as those of the Minamata Convention on Mercury. We assess how mercury emissions and deposition reductions from national climate policy in China under the Paris Agreement could contribute to the country’s commitments under the Minamata Convention. We examine emissions under climate policy scenarios developed using a computable general equilibrium model of China’s economy, end-of-pipe control scenarios that meet China’s commitments under the Minamata Convention, and these policies in combination, and evaluate deposition using a global atmospheric transport model. We find climate policy in China can provide mercury benefits when implemented with Minamata policy, achieving in the year 2030 approximately 5% additional reduction in mercury emissions and deposition in China when climate policy achieves a 5% reduction per year in carbon intensity (CO2 emissions 9.7 Gt in 2030). This corresponds to 63 Mg additional mercury emissions reductions in 2030 when implemented with Minamata Convention policy, compared to Minamata policy implemented alone. Climate policy provides emissions reductions in sectors not considered under the Minamata Convention, such as residential combustion. This changes the combination of sectors that contribute to emissions reductions.JRC.C.5-Air and Climat

    Evaluating EDGARv4.tox2 speciated mercury emissions ex-post scenarios and their impacts on modelled global and regional wet deposition patterns

    No full text
    Speciated mercury gridded emissions inventories together with chemical transport models and concentration measurements are essential when investigating both the effectiveness of mitigation measures and the mercury cycle in the environment. Since different mercury species have contrasting behaviour in the atmosphere, their proportion in anthropogenic emissions could determine the spatial impacts. In this study, the time series from 1970 to 2012 of the EDGARv4.tox2 global mercury emissions inventory are described; the total global mercury emission in 2010 is 1772 tonnes. Global grid-maps with geospatial distribution of mercury emissions at a 0.1°×0.1° resolution are provided for each year. Compared to the previous tox1 version, tox2 provides updates for more recent years and improved emissions in particular for agricultural waste burning, power generation and artisanal and small-scale gold mining (ASGM) sectors. We have also developed three retrospective emissions scenarios based on different hypotheses related to the proportion of mercury species in the total mercury emissions for each activity sector; improvements in emissions speciation are seen when using information primarily from field measurements. We evaluated them using the GEOS-Chem 3-D mercury model in order to explore the influence of speciation shifts, to reactive mercury forms in particular, on regional wet deposition patterns. The reference scenario S1 (EDGARv4.tox2_S1) uses speciation factors from the Arctic Monitoring and Assessment Programme (AMAP); scenario S2 (“EPA_power”) uses factors from EPA's Information Collection Request (ICR); and scenario S3 (“Asia_filedM”) factors from recent scientific publications. In the reference scenario, the sum of reactive mercury emissions (Hg-P and Hg2+) accounted for 25.3% of the total global emissions; the regions/countries that have shares of reactive mercury emissions higher than 6% in total global reactive mercury are China+ (30.9%), India+ (12.5%) and the United States (9.9%). In 2010, the variations of reactive mercury emissions amongst the different scenarios are in the range of −19.3 t/yr (China+) to 4.4 t/yr (OECD_Europe). However, at the sector level, the variation could be different, e.g., for the iron and steel industry in China reaches 15.4 t/yr. Model evaluation at the global level shows a variation of approximately±10% in wet deposition for the three emissions scenarios. An evaluation of the impact of mercury speciation within nested grid sensitivity simulations is performed for the United States and modelled wet deposition fluxes are compared with measurements. These studies show that using the S2 and S3 emissions of reactive mercury, can improve wet deposition estimates near sources.JRC.C.5-Air and Climat

    Global, Regional, And National Burden Of Neurological Disorders, 1990-2016: A Systematic Analysis For The Global Burden Of Disease Study 2016

    Get PDF
    Background Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247-308]) and second leading cause of deaths (9.0 million [8.8-9.4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34-44] and DALYs by 15% [9-21]) whereas their age-standardised rates decreased (deaths by 28% [26-30] and DALYs by 27% [24-31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42.2% [38.6-46.1]), migraine (16.3% [11.7-20.8]), Alzheimer's and other dementias (10.4% [9.0-124]), and meningitis (7.9% [6.6-10.4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1.12 [1.05-1.20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0.7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88.8% (86.5-90.9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22.3% [11.8-35.1] of DALYs are risk attributable) and idiopathic epilepsy (14.1% [10.8-17.5] of DALYs are risk attributable). Interpretation Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Copyright (C) The Author(s). Published by Elsevier Ltd.WoSScopu
    corecore