38 research outputs found

    Arctic river-runoff: mean residence time on the shelves and in the halocline

    Get PDF
    The mean residence time of river-runoff on the shelves and in the halocline of the Arctic Ocean is estimated from salinity and tracer data (tritium, 3He and the 18O/16O ratio). These estimates are derived from comparison of apparent tracer ages of the halocline waters using a combination of tracers that yield different information: (1) the tritium “vintage” age, which records the time that has passed since the river-runoff entered the shelf; and (2) the tritium/3He age, which reflects the time since the shelf waters left the shelf. The difference between the ages determined by these two methods is about 3–6 years. Correction for the initial tritium/3He age of the shelf waters (about 0.5–1.5 years) yields a mean residence time of the river-runoff on the shelves of the Siberian Seas of about 3.5 ± 2 years

    Long-term trends of temperature, salinity, density and transient tracers in the Central Greenland Sea

    Get PDF
    We present long-term observations of temperature, salinity, tritium/3He, chlorofluorocarbon-11 (CFC 11), and chlorofluorocarbon-12 (CFC 12) for the central Greenland Gyre. The time series span the periods between 1952 and 1994 (temperature), 1981 and 1994 (salinity), 1972 and 1994 (tritium/3He), and 1982 and 1994 (CFCs). The correlation between hydrographic and transient tracer data indicates that low temperatures in the deep water in the early 1950s and between 1960 and 1980 reflect periods of higher deep water formation rates whereas periods of increasing temperatures in the late 1950s and between 1980 and 1994 are related to low deep water formation rates. However, the transient tracer observations obtained in the 1980s and early 1990s indicate that even during periods of low deep water formation, some water from the upper water column contributed to deep water formation between 1980 and 1994. In 1994, the deep water reached temperatures and salinities of −1.149 °C and 34.899, respectively, and no longer fits most of the classical definitions of Greenland Sea Deep Water (−1.29°C< Θ < −1.0°C, 34.88<S<34.90). The temperature increase in the water column between 200 and 2000 m depth between 1980 and 1994 corresponds to an average heating rate of about 5 Wm−2 over this period, resulting in a decrease in density. The 13-year warming could be balanced by intensive cooling in two winters. The surface salinity steadily increased from 34.50 in 1991 to 34.85 in 1994

    Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area

    Get PDF
    Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought-induced mortality rates differ among global biomes and whether functional traits influence the risk of drought-induced mortality. To address these uncertainties, we performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups, and functional traits. We identified a consistent global-scale response, where mortality increased with drought severity (log mortality (trees trees-1 year-1) increased 0.46 (95% CI=0.2-0.7) with one SPEI unit drought intensity). We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought-induced tree mortality and suggest that mortality could become increasingly widespread in the future

    Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information

    Get PDF
    Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle–climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area. Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes – the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year−1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage

    Multiple Facets of Biodiversity Drive the Diversity-Stability Relationship

    Get PDF
    A significant body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity–stability relationship remains unclear. Here we used data from 39 biodiversity experiments and structural equation modeling to investigate the roles of species richness, phylogenetic diversity, and both the diversity and community-weighted mean of functional traits representing the ‘fast–slow’ leaf economics spectrum in driving the diversity–stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony. Contrary to our hypothesis, low phylogenetic diversity also enhances ecosystem stability directly, albeit weakly. While the diversity of fast–slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our results demonstrate that biodiversity influences ecosystem stability via a variety of facets, thus highlighting a more multicausal relationship than has been previously acknowledged

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Global variability in leaf respiration in relation to climate, plant functional types and leaf traits

    Get PDF
    ‱ Leaf dark respiration (Rdark) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. ‱ Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark. ‱ Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8–28°C). By contrast, Rdark at a standard T (25°C, Rdark25) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark25 at a given photosynthetic capacity (Vcmax25) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark25 values at any given Vcmax25 or [N] were higher in herbs than in woody plants. ‱ The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs)
    corecore