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Abstract- -The mean residence time of river-runoff on the shelves and in the halocline of the Arctic 
Ocean is estimated from salinity and tracer data (tritium, 3He and the 180/160 ratio). These 
estimates are derived from comparison of apparent tracer ages of the halocline waters using a 
combination of tracers that yield different information: (1) the tritium "vintage" age, which records 
the time that has passed since the river-runoff entered the shelf; and (2) the tritium/3 He age, which 
reflects the time since the shelf waters left the shelf. The difference between the ages determined by 
these two methods is about 3-6 years. Correction for the initial tritium/3He age of the shelf waters 
(about 0.5-1.5 years) yields a mean residence time of the river-runoff on the shelves of the Siberian 
Seas of about 3.5 + 2 years. 

I N T R O D U C T I O N  

THE upper water column in the Arctic Ocean is dominated by a strong halocline that 
separates the fresh Polar Surface Water from the underlying Atlantic-derived waters. The 
halocline is formed by freshwater added from river-runoff or sea ice meltwater to the 
surface waters. The halocline waters store a significant amount of freshwater which finally 
is exported from the Arctic Ocean through Fram strait via the East Greenland Current. 
Part of the freshwater transported in the East Greenland Current mixes into the center of 
the convective gyres of the Greenland and Labrador Seas, and influences in this way the 
delicate salinity balance of their surface waters. Variations in the supply of freshwater to 
the surface waters of the gyres may have significant influence on the strength of deep 
convection (AAGAARD and CARMACK, 1989), on the associated deep water formation (e.g. 
GREENLAND SEA PROJECT G R O U P ,  1990; SCHLOSSER et al., 1991), and thus on the deep 
circulation of the world ocean. 

The salinity balance of the Arctic Ocean surface waters is influenced by the supply of 
freshwater from rivers discharging onto the Arctic shelves. The total freshwater inventory 
of the shelves exceeds the annual freshwater input (e.g. HANZLICK and AAGAARD, 1980) 
and they act as a short-term buffer, moderating variations in the amount and composition 
of the freshwater. The runoff signal is also modified by mixing with halocline water and 
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sea ice meltwater during transport  from the shelves to Fram Strait. Both factors have to be 
known for a proper  understanding or the influence of variations in Arctic river-runoff on 
the salinities of the central gyres in the Greenland/Norwegian/Iceland and Labrador  Seas. 

Previously, the mean residence time of shelf waters in t h e  Arctic Ocean has been 
determined on the basis of mass balances (e.g. HANZLICK and AAGAARD, 1980; AAGAARD 
and COACHMAN, 1975). In this contribution we use tracer data from the Arctic haiocline to 
derive an independent estimate of the mean residence time of the shelf waters in the Arctic 
Ocean. 

METHOD 

Our principle approach is to compare  various tracer derived ages of halocline waters 
known to be formed on the shelves of the Arctic Ocean (e.g. AAGAARD et a l . ,  1981; JONES 
and ANDERSON, 1986). In the Eurasian Basin, halocline waters consist of a mixture of 
Atlantic water  and a freshwater component  (river-runoff and sea ice meltwater).  Certain 
tracers delivered to the shelf by river-runoff start to "age" at the time they enter  the shelf. 
Other  tracers are in contact with the a tmosphere on the shelf and their clock is set to zero 
only when they leave the shelf and submerge below Arctic Ocean surface water  or ice 
cover. We can use the difference between these two tracer-derived ages to determine the 
mean residence time of the river-runoff component  on the shelf. 

OSTLUND and HUT (1984) pointed out that the combination of salinity, tritium and ~80 
can be used to distinguish between river-runoff and sea ice meltwater  contained in the 
freshwater component  of the Arctic halocline and to determine the mean age of the river- 
runoff component .  In their approach,  they first use salinity and J80 to calculate the 
fractions of river-runoff and sea ice meltwater  in the individual water  samples. In a second 
step they calculate the tritium concentration of the river-runoff component  using a 
hydrological model and compare  this value to the tritium concentrations as a function of 
time in the Siberian rivers (estimated by (~STLUND, 1982) to obtain the so-called "tritium 
vintage age". Applying this method to halocline waters yields an estimate of the mean time 
that has passed since the river-runoff fraction contained in a water  parcel of the halocline 
was discharged onto the shelf. This time is a measure for the total time spent on the shelf as 
well as the travel time from the shelf edge to the sampling site. 

The tritium/3He age is set to zero in a different way. 3He formed in the shelf waters by 
tritium decay is lost to a large degree to the a tmosphere  by gas exchange. Thus, the 
tritium/3He age is close to zero for shelf waters. The "tritium/3He clock" is started at the 
time when the shelf waters flow into the interior basin and gas exchange with the 
a tmosphere is suppressed by sea ice and/or overlying water layers. Tritium/3He ages of the 
Arctic halocline therefore should be lower than the tritium vintage ages. The same should 
hold for all ages derived from gases dissolved in seawater (e.g. CFCs). The few published 
data are in agreement  with this concept ((~STLUND and HUT, 1984; (~)STLUND et al . ,  1982; 
SCHLOSSER, 1985; SCHLOSSER et al . ,  1990; WALLACE and MOORE, 1985; WALLACE et al . ,  
1987, 1992). 

SAMPLE COLLECTION AND MEASUREMENT 

The data used in this study were collected during the 1987 cruise of the German research 
icebreaker Polars tern  to the Nansen Basin of the Arctic Ocean. During this cruise, a 
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hydrographic section across the Nansen Basin included sampling for a variety of tracers 
(for a detailed description of the cruise, see PSSP, 1988; ANDERSON et al . ,  1989). Here  we 
use tritium, 3He and 180 data from a section reaching from the Barents Shelf to the Gakkel 
Ridge (Fig. 1). 

All tritium/Rile and part of the 1SO samples were measured at the Institute for 
Environmental  Physics at the University of Heidelberg. Most of the 180 samples were 
measured at the Lamont -Doher ty  Earth Observatory. Tritium samples were measured 
mass spectrometrically using the 3He ingrowth technique (BAYER et  al. ,  1989). Precision of 
the measurements is about _+2%. Tritium data are reported in tritium units (TU). One TU 
means a tritium to hydrogen ratio of 10 -18. 3He/4He ratios were measured with a precision 
of about _+ 0.2% and are reported in the 6 notation where 63He means the percent 
deviation of the 3He/4He ratio of a sample from that of an air standard (3He/4He ratio: 
1.384 × 10-6; CLARKE et al . ,  1976). 180 measurements were performed on a commercial 
mass spectrometer after equilibration of CO2 with the water sample. 1SO results are 
reported in the 6 notation where 6 180 is the per mill. deviation of the 180/160 ratio of the 
sample from that of SMOW (Standard Mean Ocean Water).  Precision of the Heidelberg 
180 data is typically _+0.07% while precision of the L-DGO 180 data is about _+0.02- 
0.03%. 

HYDROGRAPHIC FEATURES 

The halocline waters extend throughout the Arctic Ocean below a relatively homogene- 
ous surface layer with temperatures close to the freezing point of seawater and above a 
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Fig. 2. Potential temperature versus salinity plot for stations from the southern (287), central 
(358) and northern (371) part of the 1987 Polarstern section (for geographic positions, see Fig. 1 ). 

distinct intermediate temperature maximum caused by an advective core of Atlantic water 
(AACAARD et al . ,  1981). The halocline waters are formed and maintained by advection of 
shelf waters into the central basins (AAGAARD et al . ,  1981). JONES and ANDERSON (1986), 
using chemical properties in addition to temperature and salinity data. distinguished 
between upper and lower halocline waters. The upper halocline waters are characterized 
by salinities of about 33.1 (psu), temperatures close to the freezing point of seawater and 
distinct nutrient maxima, while the lower halocline waters have salinities of about 34.25, 
temperatures close to the freezing point of seawater and a pronounced NO minimum (see 
also JONES et al . ,  1991). There are indications that the upper halocline waters originate in 
the Chukchi Sea while the lower halocline waters are formed in the Barents and Kara seas 
(e.g. JONES and ANDERSON, 1986; JONES et al . ,  1991). 

Temperature/salinity information from selected stations of the 1987 Polarstern section 
(Fig. 2) indicates that the upper halocline is more or less completely missing in our Nansen 
Basin section. The lower salinities observed at the northern end of the section (Sta. 371) 
are due to the influence of increased river-runoff. The halocline waters therefore fall 
around a more or less linear T / S  line between the Atlantic water and the core of lower 
halocline waters as defined by JONES and ANDERSON (1986). 

RESULTS 

b J80 values increase to the south and with depth to reach a maximum of about 0.3% at 
about 300-500 m, i.e. in the core of the Atlantic Water (Fig. 3a and 3c; for comparison with 
salinity, see Fig. 3b). The surface values are relatively high on the Barents Shelf (about 
0.15% at Sta. 269; Fig. 3a) and decrease with latitude to reach minimum values of about 

- 1.6% at sta. 371. This trend in the tSO pattern reflects the higher runoff fraction in the 
surface waters of the central basin. Below the Atlantic water, 6 180 values are more or less 
constant to a depth of about 2500 m. At this depth there seems to be a slight increase in 6 
lSO by about 0.05-0.1% (Fig. 3c). The 2500 m isobath is close to the sill depth separating 
the Arctic Ocean from the Greenland Sea. Therefore, the decrease in ~) J80 above 2500 m 
might mark the influence of lower salinity waters transported from the Greenland/ 
Norwegian seas into the Arctic Ocean. 
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The tritium section (Fig. 4) shows a pattern similar to 6180 with maximum concen- 
trations of about 10 TU in the surface waters of the northernmost station (Sta. 371) and 
relatively low concentrations on the Barents Shelf (about 3.5 TU at Sta. 269). The tritium 
concentrations in the Atlantic water are fairly homogeneous between the Barents Shelf 
and the northern boundary of the Nansen Basin, with values of about 3.3-4.5 TU. 

The apparent 3H/3He-age of the surface water (Fig. 5) increases from the Barents Shelf 
(about 1 year) towards the northern Nansen Basin where they reach values between about 
3 and 5 years at Sta. 371. There  is a 3H/3He-age maximum at intermediate depths at 
stations located in the central Nansen Basin, caused by the fact that relatively young 
Atlantic water underlies relatively old water of the lower halocline. This feature disap- 
pears at stations in the northern Nansen Basin (e.g. Sta. 371) where the Atlantic water is 
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older than further south. At these northern stations, the 3H/3He-age increases more or less 
monotonically with depth. 

DISCUSSION 

River-runof f  versus sea ice meltwater 

As discussed in detail by 0STLUND and HUT (1984), a combined salinityf So balance can 
be used to distinguish between river-runoff and sea ice meltwater in the freshwater 
component of the halocline. The balance is governed by the following equations 

f~ +f~ + f  = 1 (1) 

f ~ * S , + f ~ * S r + f *  S i = S m  (2) 

fa* Oa "~-fr* Or qt_f, Oi ~_ Om" (3) 

Where f~, f a n d f  are the fractions of Atlantic water, river-runoff and sea ice meltwater in a 
halocline water parcel, and St,, St, Si, O~, Or and Oi are the corresponding salinities and 
6t80 values. S m and Om are the measured salinity and 5 lSo of the halocline water. 

For the Atlantic water, the salinity is set to 34.92 and 5 lSo to 0.30%0. The choice of the 
5180 value is based on direct measurements by OSTLUND and HuT (1984) and on our own 
data. The 5~80 value for river-runoff (Sr = 0) is set to - 2 1 %  following OSTLUND and HUT 
(1984). The 6 l SO values of sea ice (Si is set to 3%0) are variable (PFIRMAN et al., 1990). This 
fact has to be taken into account when estimating the 5 ~80 of sea ice meltwater. As we do 
not know where the sea ice that contributes to the freshwater component  of a specific water 
parcel is formed, and the 5180 value of the water from which it is formed is usually 
unknown, we assume that the sea ice meltwater has the same 5~So value as the surface 
water of the station for which the freshwater balance is estimated multiplied by a 
fractionation factor. ~So fractionation during sea ice formation leads to enrichment of the 
heavier oxygen isotope in the ice. The fractionation factor for seawater is well known for 
equilibrium conditions (about 1.0028; BEC~ and MONNICH, 1988). For dynamic conditions 
under which sea ice is formed in the Arctic Ocean, the fractionation factor is lower. 
Because we have no reliable data on the sea ice growth rate and the related variable 
fractionation factor, we use the equilibrium fractionation factor in our calculations. 
Variations within reasonable limits in the assumptions made for both the 6 lSo values of 
the sea ice meltwater (0 to -2.7%0) and the fractionation factor for sea ice formation (0- 
2.8%0) affect our estimates of the river-runoff fraction by + 1 and +_0.5%, respectively. 

Using equations (1)-(3) and the salinity and oxygen isotope values for the individual 
water masses, we can calculate the fractions of Atlantic water, sea ice meltwater and river- 
runoff (Table 1; Fig. 6). Near the Barents Shelf the freshwater component  is dominated by 
sea ice meltwater. The river-runoff fraction in the freshwater increases with increasing 
distance from the Barents Shelf. At Sta. 358 and at stations further north, the freshwater 
component consists practically exclusively of river-runoff, and part of the freshwater has 
been used to form sea ice. The river-runoff signal is a good indicator of the Eurasian 
Branch of the Transpolar Drift, the southern boundary of which lies close to Sta. 358 
(ANDERSON et al., 1989; JONES et al., 1991 ; PFmMAN et al., 1990). 

Because sea ice formation adds significant amounts of salt but influences the lSO balance 
only slightly due to the small fractionation factor, the 5~80 versus salinity plot for 



Mean residence time of arctic river-runoff 1063 

Table 1. List of  the hydrographic parameters together with the ~t 180, tritium, and 3 He measurements of  halocline 
waters (salinity <34.5) from the 1987 Polarstern section. The fractions of Atlantic water (f~), sea-ice meltwater (fi) 

and river-runoff (fr) as well as the tritium concentrations in river-runoff calculated from equation (4) (3 Hrunof f ) are 
also listed. L stands for samples measured at L-DEO, H for samples measured at Heidelberg 

Vintage 
Sta. Depth O Salinity 6180 Lab. 3H 3~ frr fa 3Hrunoff age 3H/3He-age 

269 
269 

269 
269 

285 

287 

3 - 1 . 6 6  34.094 0.252 L 3.66 2.1 0.5 97.5 - -  

9 - 1 . 6 6  34.108 0.11 H 3.43 1.4 1.1 97.6 - -  

20 - 1 . 6 4  34.154 0.241 L 3.55 1.8 0.5 97.6 - -  
40 - 1 . 1 4  34.450 0.14 H 3.53 0.6 0.8 98.6 - -  

31 - 1 . 7 0  34.202 0.22 H 3.41 1.6 0.6 97.8 - -  

10 -1 .75  34.077 0.274 L - -  2.2 0.4 97.4 - -  

m 

m 

m 

m 

m 

m 

m 

m 

m 

B 

m 

287 31 -1 .71  34.180 0.241 L 3.53 1.8 0.5 97.7 - -  

287 40 - 1.58 34.248 0.218 L 3.24 1.5 0.6 97.9 - -  

287 49 - 1.22 34.465 0.279 L 2.81 1.2 0.2 98.6 - -  

310 10 -1 .82  34.188 0.210 L 3.57 1.6 0.6 97.8 - -  
310 29 -1 .83  34.217 0.218 L 3.66 1.6 0.6 97.9 - -  

310 49 - 1 . 8 3  34.323 0.193 L - -  1.2 0.6 98.2 - -  
310 64 - 1 . 7 9  34.380 0.245 L 3.61 1.2 0.4 98.3 - -  

310 80 -1 .81  34.398 0.250 L 3.56 1.2 0.4 98.4 - -  
310 94 - 1 . 7 8  34.437 0.236 L 3.42 1 0.4 98.5 - -  

340 10 - 1 . 8 3  34.076 0.119 L 4.07 1.5 i 97.5 - -  
340 30 - 1 . 8 3  34.133 0.099 L 4.02 1.3 1.1 97.6 - -  
340 50 - 1 . 8 4  34.181 0.124 L 4.51 1.2 1 97.8 - -  

340 80 -1 .55  34.351 0.088 L 4.89 0.6 1.1 98.3 - -  

358 15 - 1 . 7 9  34.028 -0 .38  H 6.03 - 0 . 6  3.1 97.5 91.1 13.1 
358 20 - 1 . 7 9  34.044 -0 .343  L 5.89 - 0 . 5  3 97.5 91.0 13.1 
358 44 - 1 . 8 4  34.199 -0 .215  L 5.42 - 0 . 3  2.4 98 92.7 13.3 

358 69 - 1 . 8 6  34.232 -0 .273  L 5.69 - 0 . 7  2.6 98.1 95.3 13.5 
358 89 - 1 . 8 6  34.235 -0 .300  L 5.68 - 0 . 8  2.7 98.1 91.3 13.2 
358 109 - 1 . 4 9  34.324 -0 .033  L 5.44 0.1 1.6 98.3 138.7 17.6 

358 124 -1 .241  34.383 0.026 L 4.90 0.2 1.3 98.4 124.8 15.5 

358 138 - 0 . 7 2  34.450 0.048 L 4.93 0.2 1.2 98.6 138.8 17.6 

362 20 -1 .81  33.868 -0 .745  L 7.56 - 1 . 9  4.7 97.2 94.7 13.4 

362 40 -1 .85  34.112 -0 .63  H - -  -2 .1  4.2 97.9 - -  - -  

362 59 -1 .85  34.168 -0 .592  L 7.43 - 2  4 98 108.2 14.6 
362 74 -1 .85  34.181 -0 .562  L 7.66 - 1 . 9  3.9 98.1 117.6 15.2 
362 89 -1 .83  34.206 -0 .52  H - -  - 1 . 8  3.7 98.1 - -  - -  
362 104 -1 .81  34.216 -0 .455  L - -  - 1 . 5  3.4 98.1 - -  - -  

362 132 - 1 . 3 6  34.301 -0 .03  H - -  0.2 1.6 98.2 - -  - -  
362 147 - 1 . 1 2  34.351 0.015 L - -  0.3 1.4 98.3 - -  - -  
362 162 -0 .52  34.449 - 0 . 0 3  H - -  - 0 . 2  1.5 98.7 - -  - -  

364 21 - 1 . 8 0  33.607 -1 .103  L 7.75 - 2 . 9  6.4 96.5 74.9 11.6 
364 30 -1 .81  33.686 -0 .985  L 8.43 - 2 . 6  5.9 96.7 92.7 13.3 
364 40 - 1 . 8 4  33.905 -0 .839  L 8.43 - 2 . 5  5.2 97.3 104.4 14.2 
364 49 - 1 . 8 4  33.928 -0 .770  L 8.06 - 2 . 2  4.9 97.4 102.9 14 
364 59 - 1 . 8 4  33.960 -0 .793  L 7.93 - 2 . 4  5 97.5 98.6 13.7 
364 69 -1 .85  34.078 -0 .645  L 8.64 - 2 . 1  4.3 97.8 129.6 15.6 
364 83 -1 .85  34.123 -0 .599  L 7.57 - 2  4.1 97.9 109.8 14.8 
364 148 -1 .42  34.282 -0 .141 L 6.47 - 0 . 2  2.1 98.2 158.2 19.5 

0.4 
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continued overleaf 
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Table 1. Continued 

Vintage 
Sta. Depth O Salinity •180 Lab. 3H f fr f~ 3H ...... ff age 3H/3He-age 

365 25 -1.81 33.580 -1.065 L 8.42 -2 .6  6.2 96.4 87.6 12.8 5.1 
365 49 -1.84 34.083 -0.714 L 8.47 -2.4 4.6 97.8 118.4 15.2 7.8 
365 74 -1.86 34.127 -0.620 L 7.90 -2.1 4.2 97.9 116.1/ 15.1 8.1 
365 99 -1.83 34.171 -0.523 L 7.57 -1 .8  3.7 98 119.7 15.3 9.1 
365 119 -1.81 34 .208 -0.455 L 7.08 -1.5 3.4 98 .1  115.4 15.1 9.11 
365 138 -1.53 34.258 -0.170 L -- -11.3 2.2 9 8 . 1  . . . .  
365 158 -0.83 34.400 0.008 L 5.66 0.1 1.4 98.5 174.0 19.11 14.9 

371 24 -1.80 33.286 -1.58 H - -  -4.3 8.6 95.7 . . . .  
371 4(1 -1.80 33.289 -1.413 L 8.38 -3.5 7.9 95.6 7(I.2 11.3 5.2 
371 49 -1.84 33.834 -0.892 L 8.63 -2.6 5.5 9 7 . 1  103.2 14.1 6.5 
371 69 -1.84 34.006 -0.743 L 0.00 2.4 4.8 97.6 - -  - -  - -  
371 83 -1.84 34.063 -0.700 L 7.65 -2 .3  4.6 97.7 100.9 13.9 8.3 
371 99 -1.85 34.115 -11.661 L 7.59 -2 .3  4.4 97.9 I(13.6 14.1 8.0 
371 119 -1.83 34.1611 -0.553 L 7.73 -1.9 3.9 98 119.1 15.3 8.8 
371 157 -1.19 34.321 -0.16 H 6.59 -/).5 2. l 98.3 158.4 18.5 14.1 
371 177 -0.59 34.4411 /I.1/16 L 6.73 0 1.3 98.6 260.0 20.2 15.6 

Fig. 7. 
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Salinity versus 6JsO plot (for geographical position of the stations, see Fig. t ). 

h a l o c l i n e  w a t e r s  (Fig.  7) is s t r o n g l y  n o n - l i n e a r  a n d  is bas ica l ly  m e a n i n g l e s s  w i th  r e s p e c t  to  

m ix ing  c o n s i d e r a t i o n s  w i t h o u t  a d d i t i o n a l  i n f o r m a t i o n .  

T r i t i u m  v in tage  ages  

T h e  t r i t i um b a l a n c e  o f  t h e  h a l o c l i n e  w a t e r s  is g iven  by  the  f o l l o w i n g  e q u a t i o n  

L *  T, + f~ .  T , + f .  T. = T.,, (4) 

w h e r e  Td, Tr, T i a n d  Tm m e a n  t h e  t r i t i u m  c o n c e n t r a t i o n s  o f  t h e  A t l a n t i c  w a t e r ,  t h e  

r i v e r - r u n o f f ,  t h e  s ea  ice m e l t w a t e r  a n d  the  m e a s u r e d  h a l o c l i n e  w a t e r ,  r e s p e c t i v e l y .  A s  

b o t h  T d a n d  Tm a re  k n o w n  a n d  T, can  be  a s s u m e d  to  be  t h e  s a m e  as t h e  s u r f a c e  w a t e r  t r i t i u m 
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Fig. 8. 
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Same as Fig. 4 for tri t ium vintage ages. The part  of  the section in which the r iver-runoff  
componen t  used to de termine  the tritium vintage age is insignificant is shaded.  

concentration measured at the individual stations, equation (4) can be resolved for the 
tritium concentration of the river-runoff component  Tr. Comparison of this tritium 
concentration with the t ime-dependent tritium curve for river-runoff principally allows 
estimation of the "vintage" of the river-runoff. This method was used by OSTLOND and 
HOT (1984) to estimate the age of the freshwater component  of the Arctic halocline. In our 
estimates we used values of 3.25 TU for T a and the surface values measured at the 
individual stations for Ti (range: 3.7 TU at Sta. 269 to 10 TU at Sta. 371). The calculated 
tritium concentrations of the freshwater component  range from about 20 to about 260 TU 
(reference year 1987; see Table 1). We did a straightforward comparison of these values 
with the tritium curve for river-runoff estimated by OSTLUND and HUT (1984) using a 
hydrological model developed by WEISS and ROETHER (1975) extended to 1987 using 
tritium measurements in precipitation published by the International Atomic Energy 
Agency. The comparison yields "freight train" ages of the river-runoff component  of the 
freshwater between 9 and 20 years, with a general trend of increasing ages with increasing 
depth (Fig. 8, Table 1). This range is significantly higher than the values obtained by 
O S T L U N D  and HUT (1984; 8-10 years) and is similar to the range obtained using other 
tracers such as CFCs (WALLACE and MOORE, 1985; WALLACE et al., 1987) or tritium/3He 
(OSTLUND et  al., 1982; SCHLOSSER et al., 1990; WALLACE et al., 1992). 

Comparison o f  tritium vintage ages and tritium/3He ages 

The ages of the freshwater component  derived from the tritium data are systematically 
higher than the tritium/3He ages (Fig. 9). We interpret this difference as an indicator of the 
mean residence time of the freshwater component  on the shelf. Figure 9 suggests a mean 
residence time of about 8.5 years. Because the freshwater component  of the shelf waters 
leaving the shelves contains a mixture of river-runoff discharged during more than one 
year, and the tritium concentration in runoff is a non-linear function of time, the difference 
between the two ages might be misleading if interpreted in a straightforward manner.  We 
therefore calculated the tritium concentration of the freshwater component  of the shelf 
water for different storage times of the river-runoff on the shelf. For this calculation we 
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Fig. 9. 
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Fig. 10. Tritium concentrations as a function of time in thc runoff component of shelfwatcr for 
different residence times of the shelf water (one-box model).  According to their3H/3He-age,  the 
calculated tritium values in the runoff component are included in the plot at the time 1987 minus thc 

tritium/3He age for samples with salinities above 34.5. For explanation, see text. 

used the tritium curve for Arctic runoff as input function of a well-mixed reservoir 
(one-box model). The resulting tritium concentrations as functions of time are plotted for 
several mean residence times of the shelf water (Fig. 10). 

We then can compare the river-runoff tritium concentrations estimated using equation 
(4) to the simulated tritium concentrations of the river-runoff component contained in 
shelf water. If we assume that the tritium/SHe age reflects the time that has passed since the 
shelf waters entered the halocline, we can plot the tritium concentration of the runoff 
component contained in the halocline waters on the tritium curve at the time the water left 
the shelf (1987 minus tritium/SHe age; the values plotted on the y axis represent the tritium 
concentrations at the time of runoff; Fig. 10). Most of the tritium points fall between the 
curves calculated for mean residence times of the freshwater component on the shelf of 3 
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and 6 years, respectively, indicating a mean residence time of  the river-runoff component  
of  3-6  years. The box model  calculation was checked for consistency with salinity data and 
good agreement was found. 

In most  cases the tritium/3He age of  the shelf water is not zero due to limited exchange 
with the atmosphere.  Therefore,  the difference between the tritium age and the 
tritium/3He age has to be corrected to obtain a meaningful estimate of  the mean residence 
time of  the river-runoff on the shelf. We observed tritiurn/3He ages at our stations on the 
Barents shelf and close to the continental slope (269 ,280  and 287) in the range of  about 
0 .5-1.5  years. If we  correct the difference between the tritium ages and the tritium/3He 
ages for this initial tritium/3He age, we  obtain a best estimate for the mean residence time 
of  the runoff component  of  about 3.5 + 2  years. The scatter in our data reflects variations in 
both the mean residence times and the initial tritium/3He ages of  the shelf waters. 
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