574 research outputs found

    Sur les transformées de Fourier radiales

    Get PDF

    Significant improvement of intestinal microbiota of gibel carp (Carassius auratus gibelio) after traditional Chinese medicine feeding

    Get PDF
    AimsIncreasing attention has been attracted to intestinal microbiota, due to interactions with nutrition, metabolism and immune defence of the host. Traditional Chinese medicine (TCM) feed additives have been applied in aquaculture to improve fish health, but the interaction with fish gut microbiota is still poorly understood. This study aimed to explore the effect of adding TCM in feed on the intestinal microbiota of gibel carp (Carassius auratus gibelio). Methods and ResultsBacterial communities of 16 fish intestinal contents and one water sample were characterized by high-throughput sequencing and analysis of the V4-V5 region of the 16S rRNA gene. The results showed that the composition and structure of the bacterial community were significantly altered by the TCM feeding. Some phyla increased markedly (Proteobacteria, Actinobacteria, Acidobacteria, etc.), while Fusobacteria were significantly reduced. Concurrently, the richness and diversity of the taxonomic units increased, and the microbiota composition of TCM-treated fish was more homogeneous among individuals. At the genus level, the addition of TCM tended to reduce the incidence of potential pathogens (Aeromonas, Acinetobacter and Shewanella), while stimulating the emergence of some potential probiotics (Lactobacillus, Lactococcus, Bacillus and Pseudomonas). ConclusionsThese data suggested that the feed additive could regulate the fish intestinal microbiota by reinforcing the microbial balance. Significance and Impact of the StudyThis study may provide useful information for further application of TCM for diseases prevention and stress management in aquaculture.</p

    High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream (Sparus aurata L.): growth performance, muscle fatty acid profiles and histological alterations of target tissues

    Get PDF
    The feasibility of fish oil (FO) replacement by vegetable oils (VO) was investigated in gilthead sea bream (Sparus aurata L.) in a growth trial conducted for the duration of 8 months. Four isolipidic and isoproteic diets rich in plant proteins were supplemented with l-lysine (0&uacute;55 %) and soya lecithin (1 %). Added oil was either FO (control) or a blend of VO, replacing 33 % (33VO diet), 66 % (66VO diet) and 100 % (VO diet) of FO. No detrimental effects on growth performance were found with the partial FO replacement, but feed intake and growth rates were reduced by about 10 % in fish fed the VO diet. The replacement strategy did not damage the intestinal epithelium, and massive accumulation of lipid droplets was not found within enterocytes. All fish showed fatty livers, but signs of lipoid liver disease were only found in fish fed the VO diet. Muscle fatty acid profiles of total lipids reflected the diet composition with a selective incorporation of unsaturated fatty acids in polar lipids. The robustness of the phospholipid fatty acid profile when essential fatty acid requirements were theoretically covered by the diet was evidenced by multivariate principal components analysis in fish fed control, 33VO and 66VO diets

    Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing

    Get PDF
    Despite considerable progress in recent years, many questions regarding fish larval nutrition remain largely unanswered, and several research avenues remain open. A holistic understanding of the supply line of nutrients is important for developing diets for use in larval culture and for the adaptation of rearing conditions that meet the larval requirements for the optimal presentation of food organisms and/or microdiets. The aim of the present review is to revise the state of the art and to pinpoint the gaps in knowledge regarding larval nutritional requirements, the nutritional value of live feeds and challenges and opportunities in the development of formulated larval diets.Norwegian Ministry of Fisheries; Research Council of Norway [CODE-199482, GutFeeling-190019]; Spanish Ministry of Science and Innovation MICINN + FEDER/ERDF [AGL2007-64450-C02-01, CSD2007-0002]; project HYDRAA [PTDC/MAR/71685/2006]; Fundacao para a Ciencia e a Tecnologia (FCT), Portugal; FEDER; EC [LIFECYCLE- 222719]; EU RTD [FA0801]info:eu-repo/semantics/publishedVersio

    Functional Feed Assessment on Litopenaeus vannamei Using 100% Fish Meal Replacement by Soybean Meal, High Levels of Complex Carbohydrates and Bacillus Probiotic Strains

    Get PDF
    Functional feed supplemented with alternative-economic nutrient sources (protein, carbohydrates, lipids) and probiotics are being considered in shrimp/fish aquaculture production systems as an option to increase yield and profits and to reduce water pollution. In this study the probiotic potential to formulate functional feeds have been evaluated using four dietary treatments: Treatment 1 (B + Bs); Bacillus subtilis potential probiotic strain was supplemented to a soybeanmeal (SBM)—carbohydrates (CHO) basal feed. Treatment 2 (B + Bm); Bacillus megaterium potential probiotic strain was supplemented to the same SBM-CHO basal feed. In Treatment 3 (B); SBM-CHO basal feed was not supplemented with probiotic strains. Treatment 4 (C); fishmeal commercial feed (FM) was utilized as positive control. Feeding trials evaluated the survival, growth, and food conversion ratio and stress tolerance of juvenile Litopenaeus vannamei (Boone) Pacific white shrimp. Best overall shrimp performance was observed for animals fed with Treatment 1 (B+Bs); additionally, stress tolerance and hemolymph metabolites also showed the best performance in this treatment. SBM-CHO basal feed not supplemented with probiotic strains (B) presented smaller growth and lower feed conversion ratio (FCR). Shrimps fed with the fishmeal commercial feed (C) presented the lowest stress tolerance to high ammonia and low oxygen levels. Specifically selected B. subtilis strains are recommended to formulate functional and economical feeds containing high levels of vegetable; protein and carbohydrates as main dietary sources in L. vannamei cultures

    Biosynthesis of long-chain polyunsaturated fatty acids in marine fish: Characterization of an Elovl4-like elongase from cobia Rachycentron canadum and activation of the pathway during early life stages

    Get PDF
    Marine fish, unlike freshwater species, have been generally considered to have a limited ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors due to apparent limited enzymatic activities involved in the pathway. Although LC-PUFA play important physiological roles throughout the entire life cycle, requirements for early life stages are especially high and provision of preformed LC-PUFA in egg lipids appears critical to support the formation of developing tissues where these compounds accumulate. No studies, however, have been conducted to explore the capability of marine fish embryos (here referring to life stages from zygote to the oesophagus opening) for de novo synthesis of the LC-PUFA required for normal growth and development. The present study aimed to investigate the activation of the LC-PUFA biosynthetic pathway during embryogenesis of the marine teleost cobia (Rachycentron canadum). First, a fatty acyl elongase with sequence similarity to mammalian elongase of very long-chain fatty acids 4 (Elovl4) was isolated, and its biochemical function characterized showing that it catalyzed the production of very long-chain fatty acids (VLC-FA) including both saturated and polyunsaturated fatty acids with chain lenghts ≥ 24 carbons. Notably, cobia Elovl4 was able to elongate 22:5n-3 to 24:5n-3 and thus could play a key role in the biosynthesis of docosahexaenoic acid (22:6n-3), a critical fatty acid in neural tissues. Subsequently, the fatty acid dynamics of embryos at different developmental stages and the temporal expression patterns of target genes including elovl4, and the formerly characterized elovl5 elongase and ∆6 fatty acyl desaturase, were analyzed in order to elucidate the overall activation of the LC-PUFA biosynthetic pathway in cobia embryos. Our results indicated that expression of the LC-PUFA biosynthetic pathway in cobia embryos is initiated at 12-18 hours post-fertilization
    • …
    corecore