14 research outputs found

    The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters

    Get PDF
    We are grateful to the Scottish Government Rural and Environment Science and Analytical Services (RESAS), the University of Aberdeen and Nutricia Research Foundation for funding. We thank Graham Horgan from Biomathematics and Statistics Scotland for their assistance with the statistical analysis. We thank Gordon J. McDougall and Rex M. Brennan, from The James Hutton Institute for supplying the currants. None of the authors had any conflicts of interest.Peer reviewedPostprin

    Phenytoin-related ataxia in patients with epilepsy: clinical and radiological characteristics

    Get PDF
    Purpose Phenytoin is an effective anticonvulsant for focal epilepsy. Its use can be associated with long-term adverse effects including cerebellar ataxia. Whilst phenytoin is toxic to Purkinje cells in vitro; the clinical and radiological phenotype and mechanism of cerebellar degeneration in vivo remain unclear. We describe the prevalence, clinical and radiological characteristics of phenytoin-related ataxia. Methods Patients with epilepsy receiving treatment with phenytoin were recruited from the Epilepsy clinics at Royal Hallamshire Hospital, Sheffield, UK. Neurological examination was performed on all patients after recruitment. Patients were categorised into those with and without ataxia. We determined the severity of ataxia clinically (SARA score) and the pattern of cerebellar involvement by neuroimaging (MRI volumetry and MR spectroscopy). Results Forty-seven patients were recruited. Median duration of epilepsy was 24 years, median duration of phenytoin treatment was 15 years and current median phenytoin daily dose was 325 mg. Fifty-five percent of patients complained of poor balance. Clinical evidence of ataxia was seen in 40% patients. Gait, stance and heel-shin slide were the predominant features of cerebellar dysfunction. MRI demonstrated structural, volumetric and functional deficits of the cerebellum. Only one patient with ataxia had phenytoin levels above the normal range. Conclusions Cerebellar ataxia is present in 40% of patients with epilepsy and chronic exposure to phenytoin. Patients on long-term phenytoin have reduced cerebellar volume even if they have no clinical evidence of ataxia. Evidence of structural deficits on imaging suggests a predilection for vermian involvement

    Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells

    Get PDF
    Cancer gene therapy requires the design of non-viral vectors that carry genetic material and selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). Here we investigated the physicochemical/biophysical properties of chitosan–hsa-miRNA-145 (CS–miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured in vitro. Self-assembled CS–miRNA nanocomplexes were produced with a range of (+/−) charge ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. The Z-average particle diameter of the complexes was <200 nm. The surface charge increased with increasing amount of chitosan. We observed that chitosan induces the base-stacking of miRNA in a concentration dependent manner. Surface plasmon resonance spectroscopy shows that complexes formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS–miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that CS–miRNA complexes offer a promising non-viral platform for breast cancer gene therapy

    Chromosome Duplication in <i>Saccharomyces cerevisiae</i>

    Get PDF
    The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G 1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation. Keywords: DNA replication; cell cycle; chromatin; chromosome duplication; genome stability; YeastBookNational Institutes of Health (U.S.) (Grant GM-052339
    corecore