1,266 research outputs found
Mathematical modeling of gonadotropin-releasing hormone signaling.
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control of reproduction. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field.This work was funded Project Grants from MRC (93447) and the BBSRC (J014699). KTA and MV gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1 and an MRC Biomedical Informatics Fellowship (MR/K021826/1), respectively
Information Transfer via Gonadotropin-Releasing Hormone Receptors to ERK and NFAT: Sensing GnRH and Sensing Dynamics
This is the final version of the article. Available from Oxford University Press via the DOI in this record.Information theoretic approaches can be used to quantify information transfer via cell signaling networks. In this study, we do so for gonadotropin-releasing hormone (GnRH) activation of extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells (NFAT) in large numbers of individual fixed LβT2 and HeLa cells. Information transfer, measured by mutual information between GnRH and ERK or NFAT, was <1 bit (despite 3-bit system inputs). It was increased by sensing both ERK and NFAT, but the increase was <50%. In live cells, information transfer via GnRH receptors to NFAT was also <1 bit and was increased by consideration of response trajectory, but the increase was <10%. GnRH secretion is pulsatile, so we explored information gained by sensing a second pulse, developing a model of GnRH signaling to NFAT with variability introduced by allowing effectors to fluctuate. Simulations revealed that when cell–cell variability reflects rapidly fluctuating effector levels, additional information is gained by sensing two GnRH pulses, but where it is due to slowly fluctuating effectors, responses in one pulse are predictive of those in another, so little information is gained from sensing both. Wet laboratory experiments revealed that the latter scenario holds true for GnRH signaling; within the timescale of our experiments (1 to 2 hours), cell–cell variability in the NFAT pathway remains relatively constant, so trajectories are reproducible from pulse to pulse. Accordingly, joint sensing, sensing of response trajectories, and sensing of repeated pulses can all increase information transfer via GnRH receptors, but in each case the increase is small.This work was supported by Biochemical and Biophysical Science Research Council Grant BBSRC BB/J014699/1 (to C.A.M. and K.T.-A.). M.V. acknowledges the support of the Medical Research Council (a strategic skills development fellowship in biomedical informatics) and the Engineering and Physical Sciences Research Council via Grant EP/N014391/1
Information Transfer in Gonadotropin-releasing Hormone (GnRH) Signaling: extracellular signal-regulated kinase (ERK)-mediated feedback loops control hormone sensing
The computation model used in the study of GnRH signalling which was used to generate the data appearing in this paper is in ORE at http://hdl.handle.net/10871/27844Cell signaling pathways are noisy communication channels, and statistical measures derived from information theory can be used to quantify the information they transfer. Here we use single cell signaling measures to calculate mutual information as a measure of information transfer via gonadotropin-releasing hormone (GnRH) receptors (GnRHR) to extracellular signal-regulated kinase (ERK) or nuclear factor of activated T-cells (NFAT). This revealed mutual information values <1 bit, implying that individual GnRH-responsive cells cannot unambiguously differentiate even two equally probable input concentrations. Addressing possible mechanisms for mitigation of information loss, we focused on the ERK pathway and developed a stochastic activation model incorporating negative feedback and constitutive activity. Model simulations revealed interplay between fast (min) and slow (min-h) negative feedback loops with maximal information transfer at intermediate feedback levels. Consistent with this, experiments revealed that reducing negative feedback (by expressing catalytically inactive ERK2) and increasing negative feedback (by Egr1-driven expression of dual-specificity phosphatase 5 (DUSP5)) both reduced information transfer from GnRHR to ERK. It was also reduced by blocking protein synthesis (to prevent GnRH from increasing DUSP expression) but did not differ for different GnRHRs that do or do not undergo rapid homologous desensitization. Thus, the first statistical measures of information transfer via these receptors reveals that individual cells are unreliable sensors of GnRH concentration and that this reliability is maximal at intermediate levels of ERK-mediated negative feedback but is not influenced by receptor desensitization.This work was supported by a Biochemical and Biophysical Science Research Council award (BBSRC BB/J014699/1; to C. A. M. and K. T.-A.)
Gonadotropin-releasing hormone signaling: An information theoretic approach
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Gonadotropin-releasing hormone (GnRH) is a peptide hormone that mediates central control of reproduction, acting via G-protein coupled receptors that are primarily Gq coupled and mediate GnRH effects on the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. A great deal is known about the GnRH receptor signaling network but GnRH is secreted in short pulses and much less is known about how gonadotropes decode this pulsatile signal. Similarly, single cell measures reveal considerable cell-cell heterogeneity in responses to GnRH but the impact of this variability on signaling is largely unknown. Ordinary differential equation-based mathematical models have been used to explore the decoding of pulse dynamics and information theory-derived statistical measures are increasingly used to address the influence of cell-cell variability on the amount of information transferred by signaling pathways. Here, we describe both approaches for GnRH signaling, with emphasis on novel insights gained from the information theoretic approach and on the fundamental question of why GnRH is secreted in pulses.This work was funded Project Grants from MRC (93447) and the BBSRC (J014699). KTA and MV gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1 and an MRC Biomedical Informatics Fellowship (MR/K021826/1), respectively
The importance of perceptual experience in the esthetic appreciation of the body.
Several studies suggest that sociocultural models conveying extreme thinness as the widespread ideal of beauty exert an important influence on the perceptual and emotional representation of body image. The psychological mechanisms underlying such environmental influences, however, are unclear. Here, we utilized a perceptual adaptation paradigm to investigate how perceptual experience modulates body esthetic appreciation. We found that the liking judgments of round bodies increased or decreased after brief exposure to round or thin bodies, respectively. No change occurred in the liking judgments of thin bodies. The results suggest that perceptual experience may shape our esthetic appreciation to favor more familiar round body figures. Importantly, individuals with more deficits in interoceptive awareness were less prone to increase their liking ratings of round bodies after exposure, suggesting a specific risk factor for the susceptibility to the influence of the extreme thin vs. round body ideals of beauty portrayed by the media
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Assessing the relationship between eating disorder psychopathology and autistic traits in a non-clinical adult population
Prospective Study of Infection, Colonization and Carriage of Methicillin-Resistant Staphylococcus Aureus in an Outbreak Affecting 990 Patients
In the three years between November 1989 and October 1992, an outbreak of methicillin-resistantStaphylococcus aureus (MRSA) affected 990 patients at a university hospital. The distribution of patients with carriage, colonization or infection was investigated prospectively. Nosocomial acquisition was confirmed in at least 928 patients, 525 of whom were identified from clinical specimens as being infected (n=418) or colonized (n=107) by MRSA. An additional 403 patients were identified from screening specimens, of whom 58 subsequently became infected and 18 colonized. Screening of the nose, throat and perineum detected 98 % of all carriers. Of the 580 infections in 476 patients, surgical wound, urinary tract and skin infections accounted for 58 % of the infections. Of the 476 infected patients, death was attributable to MRSA infection in 13 %. Colonization with MRSA was found in 127 patients and 42 % of 165 colonized sites were the skin. Auto-infection from nasal carriage or cross-infection, probably via staff hands, seemed to be the most common mode of acquisition of MRSA infections
Increased Serum and Musculotendinous Fibrogenic Proteins following Persistent Low-Grade Inflammation in a Rat Model of Long-Term Upper Extremity Overuse.
We examined the relationship between grip strength declines and muscle-tendon responses induced by long-term performance of a high-repetition, low-force (HRLF) reaching task in rats. We hypothesized that grip strength declines would correlate with inflammation, fibrosis and degradation in flexor digitorum muscles and tendons. Grip strength declined after training, and further in weeks 18 and 24, in reach limbs of HRLF rats. Flexor digitorum tissues of reach limbs showed low-grade increases in inflammatory cytokines: IL-1β after training and in week 18, IL-1α in week 18, TNF-α and IL-6 after training and in week 24, and IL-10 in week 24, with greater increases in tendons than muscles. Similar cytokine increases were detected in serum with HRLF: IL-1α and IL-10 in week 18, and TNF-α and IL-6 in week 24. Grip strength correlated inversely with IL-6 in muscles, tendons and serum, and TNF-α in muscles and serum. Four fibrogenic proteins, TGFB1, CTGF, PDGFab and PDGFbb, and hydroxyproline, a marker of collagen synthesis, increased in serum in HRLF weeks 18 or 24, concomitant with epitendon thickening, increased muscle and tendon TGFB1 and CTGF. A collagenolytic gelatinase, MMP2, increased by week 18 in serum, tendons and muscles of HRLF rats. Grip strength correlated inversely with TGFB1 in muscles, tendons and serum; with CTGF-immunoreactive fibroblasts in tendons; and with MMP2 in tendons and serum. Thus, motor declines correlated with low-grade systemic and musculotendinous inflammation throughout task performance, and increased fibrogenic and degradative proteins with prolonged task performance. Serum TNF-α, IL-6, TGFB1, CTGF and MMP2 may serve as serum biomarkers of work-related musculoskeletal disorders, although further studies in humans are needed
- …
