168 research outputs found

    Bronchial Aspirate-Based Profiling Identifies MicroRNA Signatures Associated With COVID-19 and Fatal Disease in Critically Ill Patients

    Get PDF
    Background: The pathophysiology of COVID-19-related critical illness is not completely understood. Here, we analyzed the microRNA (miRNA) profile of bronchial aspirate (BAS) samples from COVID-19 and non-COVID-19 patients admitted to the ICU to identify prognostic biomarkers of fatal outcomes and to define molecular pathways involved in the disease and adverse events. Methods: Two patient populations were included (n = 89): (i) a study population composed of critically ill COVID-19 and non-COVID-19 patients; (ii) a prospective study cohort composed of COVID-19 survivors and non-survivors among patients assisted by invasive mechanical ventilation (IMV). BAS samples were obtained by bronchoaspiration during the ICU stay. The miRNA profile was analyzed using RT-qPCR. Detailed biomarker and bioinformatics analyses were performed. Results: The deregulation in five miRNA ratios (miR-122-5p/miR-199a-5p, miR-125a-5p/miR-133a-3p, miR-155-5p/miR-486-5p, miR-214-3p/miR-222-3p, and miR-221-3p/miR-27a-3p) was observed when COVID-19 and non-COVID-19 patients were compared. In addition, five miRNA ratios segregated between ICU survivors and nonsurvivors (miR-1-3p/miR-124-3p, miR-125b-5p/miR-34a-5p, miR-126-3p/miR-16-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). Through multivariable analysis, we constructed a miRNA ratio-based prediction model for ICU mortality that optimized the best combination of miRNA ratios (miR-125b-5p/miR-34a-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). The model (AUC 0.85) and the miR-199a-5p/miR-9-5p ratio (AUC 0.80) showed an optimal discrimination value and outperformed the best clinical predictor for ICU mortality (days from first symptoms to IMV initiation, AUC 0.73). The survival analysis confirmed the usefulness of the miRNA ratio model and the individual ratio to identify patients at high risk of fatal outcomes following IMV initiation. Functional enrichment analyses identified pathological mechanisms implicated in fibrosis, coagulation, viral infections, immune responses and inflammation. Conclusions: COVID-19 induces a specific miRNA signature in BAS from critically ill patients. In addition, specific miRNA ratios in BAS samples hold individual and collective potential to improve risk-based patient stratification following IMV initiation in COVID-19-related critical illness. The biological role of the host miRNA profiles may allow a better understanding of the different pathological axes of the disease.We want particularly to acknowledge the patients, Biobank IdISBa and CIBERES Pulmonary Biobank Consortium (PT17/0015/0001), a member of the Spanish National Biobanks Network financed by the Carlos III Health Institute, with the participation of the Units of Intensive Care, Clinical Analysis and Pulmonology of Hospital Universitario Son Espases and Hospital Son Llatzer for their collaboration. This work was also supported by IRBLleida Biobank (B.0000682) and Plataforma Biobancos PT17/0015/0027/.Peer Reviewed"Article signat per 25 autors/es: Marta Molinero, Iván D. Benítez, Jessica González, Clara Gort-Paniello, Anna Moncusí-Moix, Fátima Rodríguez-Jara, María C. García-Hidalgo, Gerard Torres, J. J. Vengoechea, Silvia Gómez, Ramón Cabo, Jesús Caballero, Jesús F. Bermejo-Martin, Adrián Ceccato, Laia Fernández-Barat, Ricard Ferrer, Dario Garcia-Gasulla, Rosario Menéndez, Ana Motos, Oscar Peñuelas, Jordi Riera, Antoni Torres, Ferran Barbé and David de Gonzalo-Calvo* on behalf of the CIBERESUCICOVID Project (COV20/00110 ISCIII)"Postprint (published version

    Primary Angioplasty in a Catastrophic Presentation: Acute Left Main Coronary Total Occlusion—The ATOLMA Registry

    Get PDF
    Objectives. To determine the outcome predictors of in-hospital mortality in acute total occlusion of the left main coronary artery (ATOLMA) patients referred to emergent angioplasty and to describe the clinical presentation and the long-term outcome of these patients.Background. ATOLMA is an uncommon angiographic finding that usually leads to a catastrophic presentation. Limited and inconsistent data have been previously reported regarding true ATOLMA, yet comprehensive knowledge remains scarce.Methods. This is a multicenter retrospective cohort that includes patients presenting with myocardial infarction due to a confirmed ATOLMA who underwent emergency percutaneous coronary intervention (PCI).Results. In the period of the study, 7930 emergent PCI were performed in the five participating centers, and 46 of them had a true ATOLMA (0.58%). At admission, cardiogenic shock was present in 89% of patients, and cardiopulmonary resuscitation was required in 67.4%. All the patients had right dominance. Angiographic success was achieved in 80.4% of the procedures, 13 patients (28.2%) died during the catheterization, and the in-hospital mortality rate was 58.6% (27/46). At one-year and at the final follow-up, 18 patients (39%) were alive, including four cases successfully transplanted. Multivariate analysis showed that postprocedural TIMI flow was the only independent predictor of in-hospital mortality (OR 0.23, (95% CI 0.1-0.36),p<0.001).Conclusions. Our study confirms that the clinical presentation of ATOLMA is catastrophic, presenting a high in-hospital mortality rate; nevertheless, primary angioplasty in this setting is feasible. Postprocedural TIMI flow resulted as the only independent predictor of in-hospital mortality. In-hospital survivors presented an encouraging outcome. ATOLMA and left dominance could be incompatible with life

    Repression of Floral Meristem Fate Is Crucial in Shaping Tomato Inflorescence

    Get PDF
    Tomato is an important crop and hence there is a great interest in understanding the genetic basis of its flowering. Several genes have been identified by mutations and we constructed a set of novel double mutants to understand how these genes interact to shape the inflorescence. It was previously suggested that the branching of the tomato inflorescence depends on the gradual transition from inflorescence meristem (IM) to flower meristem (FM): the extension of this time window allows IM to branch, as seen in the compound inflorescence (s) and falsiflora (fa) mutants that are impaired in FM maturation. We report here that JOINTLESS (J), which encodes a MADS-box protein of the same clade than SHORT VEGETATIVE PHASE (SVP) and AGAMOUS LIKE 24 (AGL24) in Arabidopsis, interferes with this timing and delays FM maturation, therefore promoting IM fate. This was inferred from the fact that j mutation suppresses the high branching inflorescence phenotype of s and fa mutants and was further supported by the expression pattern of J, which is expressed more strongly in IM than in FM. Most interestingly, FA - the orthologue of the Arabidopsis LEAFY (LFY) gene - shows the complementary expression pattern and is more active in FM than in IM. Loss of J function causes premature termination of flower formation in the inflorescence and its reversion to a vegetative program. This phenotype is enhanced in the absence of systemic florigenic protein, encoded by the SINGLE FLOWER TRUSS (SFT) gene, the tomato orthologue of FLOWERING LOCUS T (FT). These results suggest that the formation of an inflorescence in tomato requires the interaction of J and a target of SFT in the meristem, for repressing FA activity and FM fate in the IM

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case

    Get PDF
    The PTOLEMY project aims to develop a scalable design for a Cosmic NeutrinoBackground (CNB) detector, the first of its kind and the only one conceivedthat can look directly at the image of the Universe encoded in neutrinobackground produced in the first second after the Big Bang. The scope of thework for the next three years is to complete the conceptual design of thisdetector and to validate with direct measurements that the non-neutrinobackgrounds are below the expected cosmological signal. In this paper wediscuss in details the theoretical aspects of the experiment and its physicsgoals. In particular, we mainly address three issues. First we discuss thesensitivity of PTOLEMY to the standard neutrino mass scale. We then study theperspectives of the experiment to detect the CNB via neutrino capture ontritium as a function of the neutrino mass scale and the energy resolution ofthe apparatus. Finally, we consider an extra sterile neutrino with mass in theeV range, coupled to the active states via oscillations, which has beenadvocated in view of neutrino oscillation anomalies. This extra state wouldcontribute to the tritium decay spectrum, and its properties, mass and mixingangle, could be studied by analyzing the features in the beta decay electronspectrum

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe
    corecore