Abstract

The PTOLEMY project aims to develop a scalable design for a Cosmic NeutrinoBackground (CNB) detector, the first of its kind and the only one conceivedthat can look directly at the image of the Universe encoded in neutrinobackground produced in the first second after the Big Bang. The scope of thework for the next three years is to complete the conceptual design of thisdetector and to validate with direct measurements that the non-neutrinobackgrounds are below the expected cosmological signal. In this paper wediscuss in details the theoretical aspects of the experiment and its physicsgoals. In particular, we mainly address three issues. First we discuss thesensitivity of PTOLEMY to the standard neutrino mass scale. We then study theperspectives of the experiment to detect the CNB via neutrino capture ontritium as a function of the neutrino mass scale and the energy resolution ofthe apparatus. Finally, we consider an extra sterile neutrino with mass in theeV range, coupled to the active states via oscillations, which has beenadvocated in view of neutrino oscillation anomalies. This extra state wouldcontribute to the tritium decay spectrum, and its properties, mass and mixingangle, could be studied by analyzing the features in the beta decay electronspectrum

    Similar works