26 research outputs found

    Effect of gamma radiation of 60Co on sunflower plants (Helianthus annuus L.) (Asteraceae), from irradiated achenes

    Get PDF
    In order to know the effect of 60Co gamma irradiation, in the sunflower crop, were irradiated achenes in the Transelektro LGI-01 in the Instituto Nacional de Investigaciones Nucleares. The data was evaluated under a completely randomized design, where the treatments were 0, 100, 200, 300, 400, 500, 600, 700, 800 and 900 Gy and four repetitions (10x4) = 40 experimental units. The response variables were: plant height, root length and volume, dry biomass. The results indicated that germination and sprouting decreased as the radiation increased, adjusting these to a quadratic model. Plant height, length, root volume and dry biomass decreased at high doses. From this investigation it was concluded, that doses of 100 and 200 Gy, have a stimulating effect on plant height and root length, being an important agent, to induce genetic variability in sunflower

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Preparation and characterization of ³³S samples for ³³S(n,α)³⁰Si cross-section measurements at the n_TOF facility at CERN

    Get PDF
    Thin 33S samples for the study of the 33S(n,α)30Si cross-section at the n_TOF facility at CERN were made by thermal evaporation of 33S powder onto a dedicated substrate made of kapton covered with thin layers of copper, chromium and titanium. This method has provided for the first time bare sulfur samples a few centimeters in diameter. The samples have shown an excellent adherence with no mass loss after few years and no sublimation in vacuum at room temperature. The determination of the mass thickness of 33S has been performed by means of Rutherford backscattering spectrometry. The samples have been successfully tested under neutron irradiation

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar

    The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach

    No full text
    The effect of disruptive technologies unrelated to the energy sector, such as additive manufacturing (AM), tends to be overlooked in energy scenarios. The present research assessed the potential effect of AM on the global energy demand in four energy scenarios for 2050 with extended versus limited globalisation and limited versus extensive adoption of AM. These scenarios were developed and applied for two cases, namely the aerospace sector and the construction sector, analysing the effect of AM on each phase in the value chain. In the aerospace sector, energy savings of 5–25% can be made, with the largest effect in the use phase because of weight reduction. In the construction sector, energy savings of 4–21% are achievable, with the largest effects in the feedstock, transport and use phases. Extrapolated to the global energy demand in 2050, a reduction of 26–138 EJ/yr, equivalent to 5–27% of global demand is achievable. It is recommended that energy policymakers should consider integrating AM and other disruptive technologies, such as robotics and the Internet of Things, into their long-term energy planning, policies and programmes, including Nationally Determined Contributions under the Paris Agreement on climate change.Green TUEnergy Technolog

    Effect of gamma radiation of 60Co on sunflower plants (Helianthus annuus L.) (Asteraceae), from irradiated achenes

    Get PDF
    In order to know the effect of 60Co gamma irradiation, in the sunflower crop, were irradiated achenes in the Transelektro LGI-01 in the Instituto Nacional de Investigaciones Nucleares. The data was evaluated under a completely randomized design, where the treatments were 0, 100, 200, 300, 400, 500, 600, 700, 800 and 900 Gy and four repetitions (10x4) = 40 experimental units. The response variables were: plant height, root length and volume, dry biomass. The results indicated that germination and sprouting decreased as the radiation increased, adjusting these to a quadratic model. Plant height, length, root volume and dry biomass decreased at high doses. From this investigation it was concluded, that doses of 100 and 200 Gy, have a stimulating effect on plant height and root length, being an important agent, to induce genetic variability in sunflower

    Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells.

    Get PDF
    Pediocin PA-1 is a bacteriocin which is produced by Pediococcus acidilactici PAC1.0. We demonstrate that pediocin PA-1 kills sensitive Pediococcus cells and acts on the cytoplasmic membrane. In contrast to its lack of impact on immune cells, pediocin PA-1 dissipates the transmembrane electrical potential and inhibits amino acid transport in sensitive cells. Pediocin interferes with the uptake of amino acids by cytoplasmic membrane vesicles derived from sensitive cells, while it is less effective with membranes derived from immune cells. In liposomes fused with membrane vesicles derived from both sensitive and immune cells, pediocin PA-1 elicits an efflux of small ions and, at higher concentrations, an efflux of molecules having molecular weights of up to 9,400. Our data suggest that pediocin PA-1 functions in a voltage-independent manner but requires a specific protein in the target membrane

    Changes in cerebral oxygenation and cerebral blood flow during hemodialysis – A simultaneous near-infrared spectroscopy and positron emission tomography study

    Get PDF
    Near-infrared spectroscopy (NIRS) is used to monitor cerebral tissue oxygenation (rSO2) depending on cerebral blood flow (CBF), cerebral blood volume and blood oxygen content. We explored whether NIRS might be a more easy applicable proxy to [15O]H2O positron emission tomography (PET) for detecting CBF changes during hemodialysis. Furthermore, we compared potential determinants of rSO2 and CBF. In 12 patients aged ≥ 65 years, NIRS and PET were performed simultaneously: before (T1), early after start (T2), and at the end of hemodialysis (T3). Between T1 and T3, the relative change in frontal rSO2 (ΔrSO2) was −8 ± 9% (P = 0.001) and −5 ± 11% (P = 0.08), whereas the relative change in frontal gray matter CBF (ΔCBF) was −11 ± 18% (P = 0.009) and −12 ± 16% (P = 0.007) for the left and right hemisphere, respectively. ΔrSO2 and ΔCBF were weakly correlated for the left (ρ 0.31, P = 0.4), and moderately correlated for the right (ρ 0.69, P = 0.03) hemisphere. The Bland-Altman plot suggested underestimation of ΔCBF by NIRS. Divergent associations of pH, pCO2 and arterial oxygen content with rSO2 were found compared to corresponding associations with CBF. In conclusion, NIRS could be a proxy to PET to detect intradialytic CBF changes, although NIRS and PET capture different physiological parameters of the brain
    corecore