75 research outputs found

    Characterizing the Circumgalactic Medium of Quasars at z \sim 2.2 through Hα\alpha and Lyα\alpha Emission

    Full text link
    The discovery of giant quasar Lyα\alpha nebulae at z>2z>2 has opened up the possibility to directly study in emission the Circumgalactic and Intergalactic Medium (CGM/IGM). However, the resonant nature of the Lyα\alpha line and its different emission mechanisms hamper the ability to constrain both the kinematics and physical properties of the CGM/IGM. Here, we present results of a pilot project aiming at the detection of CGM Hα\alpha emission, a line which does not suffer from these limitations. To this end, we first used KCWI to detect Lyα\alpha emission around three bright quasars with 2.25<z<2.272.25<z<2.27, a range which is free from bright IR sky lines for Hα\alpha, and then selected the most extended nebula for Hα\alpha follow-up with MOSFIRE. Within the MOSFIRE slit, we detected Hα\alpha emission extending up to 20 physical kpc with a total Hα\alpha flux of FHα_{ \textrm{H}\alpha}=(9.5 ±\pm 0.9) ×\times 1018^{-18} erg s1^{-1} cm2^{-2}. Considering the Lyα\alpha flux in the same region, we found FLyα_{ \textrm{Ly}\alpha}/FHα_{ \textrm{H}\alpha}=3.7 ±\pm 0.3 consistent with that obtained for the Slug Nebula at z=2.275=2.275 and with recombination radiation. This implies high densities or a very broad density distribution within the CGM of high-redshift quasars. Moreover, the Hα\alpha line profile suggests the presence of multiple emitting components overlapping along our line-of-sight and relatively quiescent kinematics, which seems incompatible with either quasar outflows capable of escaping the potential well of the host halo or disk-like rotation in a massive halo (>1012>10^{12}M_{\odot}).Comment: 15 pages, 12 figures, 2 table

    Ubiquitous giant Ly α\alpha nebulae around the brightest quasars at z3.5z\sim3.5 revealed with MUSE

    Get PDF
    Direct Ly α\alpha imaging of intergalactic gas at z2z\sim2 has recently revealed giant cosmological structures around quasars, e.g. the Slug Nebula (Cantalupo et al. 2014). Despite their high luminosity, the detection rate of such systems in narrow-band and spectroscopic surveys is less than 10%, possibly encoding crucial information on the distribution of gas around quasars and the quasar emission properties. In this study, we use the MUSE integral-field instrument to perform a blind survey for giant Ly α\alpha nebulae around 17 bright radio-quiet quasars at 3<z<43<z<4 that does not suffer from most of the limitations of previous surveys. After data reduction and analysis performed with specifically developed tools, we found that each quasar is surrounded by giant Ly α\alpha nebulae with projected sizes larger than 100 physical kpc and, in some cases, extending up to 320 kpc. The circularly averaged surface brightness profiles of the nebulae appear very similar to each other despite their different morphologies and are consistent with power laws with slopes 1.8\approx-1.8. The similarity between the properties of all these nebulae and the Slug Nebula suggests a similar origin for all systems and that a large fraction of gas around bright quasars could be in a relatively "cold" (T\sim104^4K) and dense phase. In addition, our results imply that such gas is ubiquitous within at least 50 kpc from bright quasars at 3<z<43<z<4 independently of the quasar emission opening angle, or extending up to 200 kpc for quasar isotropic emission.Comment: 19 pages, 9 figures, 3 Tables, accepted to Ap

    The Zero Emissions Commitment and climate stabilization

    Get PDF
    How do we halt global warming? Reaching net zero carbon dioxide (CO2) emissions is understood to be a key milestone on the path to a safer planet. But how confident are we that when we stop carbon emissions, we also stop global warming? The Zero Emissions Commitment (ZEC) quantifies how much warming or cooling we can expect following a complete cessation of anthropogenic CO2 emissions. To date, the best estimate by the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report is zero change, though with substantial uncertainty. In this article, we present an overview of the changes expected in major Earth system processes after net zero and their potential impact on global surface temperature, providing an outlook toward building a more confident assessment of ZEC in the decades to come. We propose a structure to guide research into ZEC and associated changes in the climate, separating the impacts expected over decades, centuries, and millennia. As we look ahead at the century billed to mark the end of net anthropogenic CO2 emissions, we ask: what is the prospect of a stable climate in a post-net zero world

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Dark galaxy candidates at redshift∼ 3.5 detected with MUSE

    Get PDF
    Recent theoretical models suggest that the early phase of galaxy formation could involve an epoch when galaxies are gas rich but inefficient at forming stars: a “dark galaxy” phase. Here, we report the results of our Multi-Unit Spectroscopic Explorer (MUSE) survey for dark galaxies fluorescently illuminated by quasars at z > 3. Compared to previous studies which are based on deep narrowband (NB) imaging, our integral field survey provides a nearly uniform sensitivity coverage over a large volume in redshift space around the quasars as well as full spectral information at each location. Thanks to these unique features, we are able to build control samples at large redshift distances from the quasars using the same data taken under the same conditions. By comparing the rest-frame equivalent width (EW0) distributions of the Lyα sources detected in proximity to the quasars and in control samples, we detect a clear correlation between the locations of high-EW0 objects and the quasars. This correlation is not seen in other properties, such as Lyα luminosities or volume overdensities, suggesting the possible fluorescent nature of at least some of these objects. Among these, we find six sources without continuum counterparts and EW0 limits larger than 240 Å that are the best candidates for dark galaxies in our survey at z > 3.5. The volume densities and properties, including inferred gas masses and star formation efficiencies, of these dark galaxy candidates are similar to those of previously detected candidates at z ≈ 2.4 in NB surveys. Moreover, if the most distant of these are fluorescently illuminated by the quasar, our results also provide a lower limit of t = 60 Myr on the quasar lifetime.peer-reviewe

    The Zero Emissions Commitment and climate stabilization

    Get PDF
    How do we halt global warming? Reaching net zero carbon dioxide (CO2) emissions is understood to be a key milestone on the path to a safer planet. But how confident are we that when we stop carbon emissions, we also stop global warming? The Zero Emissions Commitment (ZEC) quantifies how much warming or cooling we can expect following a complete cessation of anthropogenic CO2 emissions. To date, the best estimate by the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report is zero change, though with substantial uncertainty. In this article, we present an overview of the changes expected in major Earth system processes after net zero and their potential impact on global surface temperature, providing an outlook toward building a more confident assessment of ZEC in the decades to come. We propose a structure to guide research into ZEC and associated changes in the climate, separating the impacts expected over decades, centuries, and millennia. As we look ahead at the century billed to mark the end of net anthropogenic CO2 emissions, we ask: what is the prospect of a stable climate in a post-net zero world?</jats:p

    The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library

    Get PDF
    Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity &gt; 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
    corecore