568 research outputs found

    The altered expression of α1 and β3 subunits of the gamma-aminobutyric acid A receptor is related to the hepatitis C virus infection

    Get PDF
    The modulation of the gamma-aminobutyric acid type A (GABA A) receptors activity was observed in several chronic hepatitis failures, including hepatitis C. The expression of GABA A receptor subunits α1 and β3 was detected in peripheral blood mononuclear cells (PBMCs) originated from healthy donors. The aim of the study was to evaluate if GABA A α1 and β3 expression can also be observed in PBMCs from chronic hepatitis C (CHC) patients and to evaluate a possible association between their expression and the course of hepatitis C virus (HCV) infection. GABA A α1- and β3-specific mRNAs presence and a protein expression in PBMCs from healthy donors and CHC patients were screened by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. In patients, HCV RNA was determined in sera and PBMCs. It was shown that GABA A α1 and β3 expression was significantly different in PBMCs from CHC patients and healthy donors. In comparison to healthy donors, CHC patients were found to present an increase in the expression of GABA A α1 subunit and a decrease in the expression of β3 subunit in their PBMCs. The modulation of α1 and β3 GABA A receptors subunits expression in PBMCs may be associated with ongoing or past HCV infection

    Antifascism, the 1956 Revolution and the politics of communist autobiographies in Hungary 1944-2000

    Get PDF
    This is a postprint of an article whose final and definitive form has been published in Europe-Asia Studies © 2006 University of Glasgow; Europe-Asia Studies is available online at http://www.informaworld.com.Using oral history, this contribution explores the reshaping of individuals' public and private autobiographies in response to different political environments. In particular, it analyses the testimony of those who were communists in Hungary between 1945 and 1956, examining how their experiences of fascism, party membership, the 1956 Revolution and the collapse of communism led them in each case to refashion their life stories. Moreover, it considers how their biographies played varying functions at different points in their lives: to express identification with communism, to articulate resistance and to communicate ambition before 1956; to protect themselves from the state after 1956; and to rehabilitate themselves morally in a society which stigmatised them after 1989.I didn't use this word 'liberation' (felszabadulás), because in 1956 my life really changed. Everybody's lives went through a great change, but mine especially. … I wasn't disgusted with myself that I had called the arrival of the Red Army in 1945 a liberation, but [after 1956] I didn't use it anymore

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    The determinants of stroke phenotypes were different from the predictors (CHADS2 and CHA2DS2-VASc) of stroke in patients with atrial fibrillation: a comprehensive approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atrial fibrillation (AF) is a leading cause of fatal ischemic stroke. It was recently reported that international normalized ratio (INR) levels were associated with infarct volumes. However, factors other than INR levels that affect stroke phenotypes are largely unknown. Therefore, we evaluated the determinants of stroke phenotypes (pattern and volume) among patients with AF who were not adequately anticoagulated.</p> <p>Methods</p> <p>We analyzed data pertaining to consecutive AF patients admitted over a 6-year period with acute MCA territory infarcts. We divided the patients according to DWI (diffusion-weighted imaging) lesion volumes and patterns, and the relationship between stroke predictors (the CHADS<sub>2 </sub>and CHA<sub>2</sub>DS<sub>2</sub>-VASc score), systemic, and local factors and each stroke phenotype were then evaluated.</p> <p>Results</p> <p>The stroke phenotypes varied among 231 patients (admission INR median 1.06, interquartile range (IQR) 1.00-1.14). Specifically, (1) the DWI lesion volumes ranged from 0.04-338.62 ml (median 11.86 ml; IQR, 3.07-44.20 ml) and (2) 46 patients had a territorial infarct pattern, 118 had a lobar/deep pattern and 67 had a small scattered pattern. Multivariate testing revealed that the CHADS<sub>2 </sub>and CHA<sub>2</sub>DS<sub>2</sub>-VASc score were not related to either stroke phenotype. Additionally, the prior use of antiplatelet agents was not related to the stroke phenotypes. Congestive heart failure and diastolic dysfunction were not associated with stroke phenotypes.</p> <p>Conclusions</p> <p>The results of this study indicated that the determinants of stroke phenotypes were different from the predictors (i.e., CHADS2 and CHA<sub>2</sub>DS<sub>2</sub>-VASc score) of stroke in patients with AF.</p

    Treating Cancer as an Infectious Disease—Viral Antigens as Novel Targets for Treatment and Potential Prevention of Tumors of Viral Etiology

    Get PDF
    Nearly 20% of human cancers worldwide have an infectious etiology with the most prominent examples being hepatitis B and C virus-associated hepatocellular carcinoma and human papilloma virus-associated cervical cancer. There is an urgent need to find new approaches to treatment and prevention of virus-associated cancers.Viral antigens have not been previously considered as targets for treatment or prevention of virus-associated cancers. We hypothesized that it was possible to treat experimental HPV16-associated cervical cancer (CC) and Hepatitis B-associated hepatocellular carcinoma (HCC) by targeting viral antigens expressed on cancer cells with radiolabeled antibodies to viral antigens. Treatment of experimental CC and HCC tumors with (188)Re-labeled mAbs to E6 and HBx viral proteins, respectively, resulted in significant and dose-dependent retardation of tumor growth in comparison with untreated mice or mice treated with unlabeled antibodies.This strategy is fundamentally different from the prior uses of radioimmunotherapy in oncology, which targeted tumor-associated human antigens and promises increased specificity and minimal toxicity of treatment. It also raises an exciting possibility to prevent virus-associated cancers in chronically infected patients by eliminating cells infected with oncogenic viruses before they transform into cancer

    Circulating Mesenchymal Stem Cells Microparticles in Patients with Cerebrovascular Disease

    Get PDF
    Preclinical and clinical studies have shown that the application of CD105+ mesenchymal stem cells (MSCs) is feasible and may lead to recovery after stroke. In addition, circulating microparticles are reportedly functional in various disease conditions. We tested the levels of circulating CD105+ microparticles in patients with acute ischemic stroke. The expression of CD105 (a surface marker of MSCs) and CXCR4 (a CXC chemokine receptor for MSC homing) on circulating microparticles was evaluated by flow cytometry of samples from 111 patients and 50 healthy subjects. The percentage of apoptotic CD105 microparticles was determined based on annexin V (AV) expression. The relationship between serum levels of CD105+/AV− microparticles, stromal cells derived factor-1α (SDF-1α), and the extensiveness of cerebral infarcts was also evaluated. CD105+/AV− microparticles were higher in stroke patients than control subjects. Correlation analysis showed that the levels of CD105+/AV− microparticles increased as the baseline stroke severity increased. Multivariate testing showed that the initial severity of stroke was independently associated with circulating CD105+/AV− microparticles (OR, 1.103 for 1 point increase in the NIHSS score on admission; 95% CI, 1.032–1.178) after adjusting for other variables. The levels of CD105+/CXCR4+/AV− microparticles were also increased in patients with severe disability (r = 0.192, p = 0.046 for NIHSS score on admission), but were decreased with time after stroke onset (r = −0.204, p = 0.036). Risk factor profiles were not associated with the levels of circulating microparticles or SDF-1α. In conclusion, our data showed that stroke triggers the mobilization of MSC-derived microparticles, especially in patients with extensive ischemic stroke

    A 160-kilobit molecular electronic memory patterned at 10^(11) bits per square centimetre

    Get PDF
    The primary metric for gauging progress in the various semiconductor integrated circuit technologies is the spacing, or pitch, between the most closely spaced wires within a dynamic random access memory (DRAM) circuit. Modern DRAM circuits have 140nm pitch wires and a memory cell size of 0.0408 μm^2. Improving integrated circuit technology will require that these dimensions decrease over time. However, at present a large fraction of the patterning and materials requirements that we expect to need for the construction of new integrated circuit technologies in 2013 have ‘no known solution’. Promising ingredients for advances in integrated circuit technology are nanowires, molecular electronics and defect-tolerant architectures, as demonstrated by reports of single devices and small circuits. Methods of extending these approaches to large-scale, high-density circuitry are largely undeveloped. Here we describe a 160,000-bit molecular electronic memory circuit, fabricated at a density of 10^(11) bits cm^(-2) (pitch 33 nm; memory cell size 0.0011 mm^2), that is, roughly analogous to the dimensions of a DRAM circuit projected to be available by 2020. A monolayer of bistable, [2]rotaxane molecules 10 served as the data storage elements. Although the circuit has large numbers of defects, those defects could be readily identified through electronic testing and isolated using software coding. The working bits were then configured to form a fully functional random access memory circuit for storing and retrieving information

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore