834 research outputs found
MONOLAYERS AND LANGMUIR-BLODGETT MULTILAYER FILMS OF A CONJUGATED AZO POLYMER
A black pi-conjugated azo polymer was synthesized by oxidative coupling of 3,5-diamino-1-octadecylbenzoate. The polymer, with a number average molecular weight of about 16 000, was soluble in chloroform. Monolayer formation was studied by transmission electron microscopy and the structure of the deposited Langmuir-Blodgett multilayer film was investigated with small angle X-ray diffraction and Fourier transform IR spectroscopy. A smooth monolayer was obtained when, after spreading, the material was allowed to disintegrate without any applied surface pressure for 18 h at 20-degrees-C and 1 h at 40-degrees-C. Monolayers could be transferred successfully onto different substrates at high temperature (40-degrees-C) and high pressure (30 mN m-1). The deposition was of the Y type with transfer ratios of 1 on both the downstroke and the upstroke. It was concluded that the aliphatic side chains are not able to crystallize and therefore form amorphous layers
Supersymmetric Solutions in Six Dimensions: A Linear Structure
The equations underlying all supersymmetric solutions of six-dimensional
minimal ungauged supergravity coupled to an anti-self-dual tensor multiplet
have been known for quite a while, and their complicated non-linear form has
hindered all attempts to systematically understand and construct BPS solutions.
In this paper we show that, by suitably re-parameterizing these equations, one
can find a structure that allows one to construct supersymmetric solutions by
solving a sequence of linear equations. We then illustrate this method by
constructing a new class of geometries describing several parallel spirals
carrying D1, D5 and P charge and parameterized by four arbitrary functions of
one variable. A similar linear structure is known to exist in five dimensions,
where it underlies the black hole, black ring and corresponding microstate
geometries. The unexpected generalization of this to six dimensions will have
important applications to the construction of new, more general such
geometries.Comment: v2: Eqs. (2.1), (2.39) corrected, references added. v3: minor
correction
A Synthetic Adjuvant to Enhance and Expand Immune Responses to Influenza Vaccines
Safe, effective adjuvants that enhance vaccine potency, including induction of neutralizing Abs against a broad range of variant strains, is an important strategy for the development of seasonal influenza vaccines which can provide optimal protection, even during seasons when available vaccines are not well matched to circulating viruses. We investigated the safety and ability of Glucopyranosyl Lipid Adjuvant-Stable Emulsion (GLA-SE), a synthetic Toll-like receptor (TLR)4 agonist formulation, to adjuvant FluzoneÂź in mice and non-human primates. The GLA-SE adjuvanted Fluzone vaccine caused no adverse reactions, increased the induction of T helper type 1 (TH1)-biased cytokines such as IFNÎł, TNF and IL-2, and broadened serological responses against drifted A/H1N1 and A/H3N2 influenza variants. These results suggest that synthetic TLR4 adjuvants can enhance the magnitude and quality of protective immunity induced by influenza vaccines
Common Sole Larvae Survive High Levels of Pile-Driving Sound in Controlled Exposure Experiments
In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1”Pa2 (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1”Pa2s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1”Pa2s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised
A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness
<p>Abstract</p> <p>Background</p> <p>South Africa has one of the highest incidences of multidrug-resistant tuberculosis (MDR-TB) in the world. Concomitantly, aminoglycosides are commonly used in this country as a treatment against MDR-TB. To date, at least five mutations are known to confer susceptibility to aminoglycoside-induced hearing loss. The aim of the present study was to develop a rapid screening method to determine whether these mutations are present in the South African population.</p> <p>Methods</p> <p>A multiplex method using the SNaPshot technique was used to screen for five mutations in the <it>MT-RNR1 </it>gene: A1555G, C1494T, T1095C, 961delT+C(n) and A827G. A total of 204 South African control samples, comprising 98 Mixed ancestry and 106 Black individuals were screened for the presence of the five mutations.</p> <p>Results</p> <p>A robust, cost-effective method was developed that detected the presence of all five sequence variants simultaneously. In this pilot study, the A1555G mutation was identified at a frequency of 0.9% in the Black control samples. The 961delT+C(n) variant was present in 6.6% of the Black controls and 2% of the Mixed ancestry controls. The T1095C, C1494T and A827G variants were not identified in any of the study participants.</p> <p>Conclusion</p> <p>The frequency of 0.9% for the A1555G mutation in the Black population in South Africa is of concern given the high incidence of MDR-TB in this particular ethnic group. Future larger studies are warranted to determine the true frequencies of the aminoglycoside deafness mutations in the general South African population. The high frequencies of the 961delT+C(n) variant observed in the controls suggest that this change is a common non-pathogenic polymorphism. This genetic method facilitates the identification of individuals at high risk of developing hearing loss prior to the start of aminoglycoside therapy. This is important in a low-resource country like South Africa where, despite their adverse side-effects, aminoglycosides will continue to be used routinely and are accompanied with very limited or no audiological monitoring.</p
Vaccination against Human Influenza A/H3N2 Virus Prevents the Induction of Heterosubtypic Immunity against Lethal Infection with Avian Influenza A/H5N1 Virus
Annual vaccination against seasonal influenza viruses is recommended for certain individuals that have a high risk for complications resulting from infection with these viruses. Recently it was recommended in a number of countries including the USA to vaccinate all healthy children between 6 and 59 months of age as well. However, vaccination of immunologically naĂŻve subjects against seasonal influenza may prevent the induction of heterosubtypic immunity against potentially pandemic strains of an alternative subtype, otherwise induced by infection with the seasonal strains. Here we show in a mouse model that the induction of protective heterosubtypic immunity by infection with a human A/H3N2 influenza virus is prevented by effective vaccination against the A/H3N2 strain. Consequently, vaccinated mice were no longer protected against a lethal infection with an avian A/H5N1 influenza virus. As a result H3N2-vaccinated mice continued to loose body weight after A/H5N1 infection, had 100-fold higher lung virus titers on day 7 post infection and more severe histopathological changes than mice that were not protected by vaccination against A/H3N2 influenza. The lack of protection correlated with reduced virus-specific CD8+ T cell responses after A/H5N1 virus challenge infection. These findings may have implications for the general recommendation to vaccinate all healthy children against seasonal influenza in the light of the current pandemic threat caused by highly pathogenic avian A/H5N1 influenza viruses
Observation of associated near-side and away-side long-range correlations in âsNN=5.02ââTeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (ÎÏ) and pseudorapidity (Îη) are measured in âsNN=5.02ââTeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1ââÎŒb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Îη|<5) ânear-sideâ (ÎÏâŒ0) correlation that grows rapidly with increasing ÎŁETPb. A long-range âaway-sideâ (ÎÏâŒÏ) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Îη and ÎÏ) and ÎŁETPb dependence. The resultant ÎÏ correlation is approximately symmetric about Ï/2, and is consistent with a dominant cosâĄ2ÎÏ modulation for all ÎŁETPb ranges and particle pT
- âŠ