30 research outputs found

    Novel sol–gel preparation of (PO)–(CaO)–(NaO)–(TiO) bioresorbable glasses (X = 0.05, 0.1, and 0.15)

    Get PDF
    Quaternary phosphate-based glasses in the PO–CaO–NaO–TiO system with a fixed PO and CaO content of 40 and 25 mol% respectively have been successfully synthesised via sol–gel method and bulk, transparent samples were obtained. The structure, elemental proportion, and thermal properties of stabilised sol–gel glasses have been characterised using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), P nuclear magnetic resonance (P NMR), titanium K-edge X-ray absorption near-edge structure (XANES), fourier transform infrared (FTIR) spectroscopy, and differential thermal analysis (DTA). The XRD results confirmed the amorphous nature for all stabilized sol–gel derived glasses. The EDX result shows the relatively low loss of phosphorus during the sol–gel process and Ti K-edge XANES confirmed titanium in the glass structure is in mainly six-fold coordination environment. The P NMR and FTIR results revealed that the glass structure consist of mainly Q and Q phosphate units and the Ti cation was acting as a cross-linking between phosphate units. In addition DTA results confirmed a decrease in the glass transition and crystallisation temperature with increasing NaO content. Ion release studies also demonstrated a decrease in degradation rates with increasing TiO content therefore supporting the use of these glasses for biomedical applications that require a degree of control over glass degradation. These sol–gel glasses also offer the potential to incorporate proactive molecules for drug delivery application due to the low synthesis temperature employed

    Sol-gel based materials for biomedical applications

    Get PDF
    Sol-gel chemistry offers a flexible approach to obtaining a diverse range of materials. It allows differing chemistries to be achieved as well as offering the ability to produce a wide range of nano-/micro-structures. The paper commences with a generalized description of the various sol-gel methods available and how these chemistries control the bulk properties of the end products. Following this, a more detailed description of the biomedical areas where sol-gel materials have been explored and found to hold significant potential. One of the interesting fields that has been developed recently relates to hybrid materials that utilize sol-gel chemistry to achieve unusual composite properties. Another intriguing feature of sol-gels is the unusual morphologies that are achievable at the micro- and nano-scale. Subsequently the ability to control pore chemistry at a number of different length scales and geometries has proven to be a fruitful area of exploitation, that provides excellent bioactivity and attracts cellular responses as well as enables the entrapment of biologically active molecules and their controllable release for therapeutic action. The approaches of fine-tuning surface chemistry and the combination with other nanomaterials have also enabled targeting of specific cell and tissue types for drug delivery with imaging capacity

    Strontium- and calcium-containing, titanium-stabilised phosphate-based glasses with prolonged degradation for orthopaedic tissue engineering.

    Get PDF
    Strontium- and calcium-releasing, titanium-stabilised phosphate-based glasses with a controlled degradation rate are currently under development for orthopaedic tissue engineering applications. Ca and/or Sr were incorporated at varying concentrations in quaternary phosphate-based glasses, in order to promote osteoinduction. Ti was incorporated at a fixed concentration in order to prolong degradation. Glasses of the general formula (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) were prepared via the melt-quench technique. The materials were characterised by energy-dispersive X-ray spectroscopy, X-ray diffraction, (31)P magic angle spinning nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential thermal analysis and density determination. The dissolution rate in distilled water was determined by measuring mass loss, ion release and pH change over a two-week period. In addition, the cytocompatibility and alkaline phosphatase activity of an osteoblast-like cell line cultured on the surface of glass discs was assessed. The glasses were shown to be amorphous and contained Q(1), Q(2) and Q(3) species. Fourier transform infrared spectroscopy revealed small changes in the glass structure as Ca was substituted with Sr and differential thermal analysis confirmed a decrease in crystallisation temperature with increasing Sr content. Degradation and ion release studies also showed that mass loss was positively correlated with Sr content. These results were attributed to the lower electronegativity of Sr in comparison to Ca favouring the formation of phosphate-based mineral phases. All compositions supported cell proliferation and survival and induced at least 2.3-fold alkaline phosphatase activity relative to the control. Glass containing 17.5 mol% Sr had 3.6-fold greater alkaline phosphatase activity than the control. The gradual release of Ca and Sr supported osteoinduction, indicating their potential suitability in orthopaedic tissue engineering applications

    Potential cost savings with terrestrial rabies control

    Get PDF
    BACKGROUND: The cost-benefit of raccoon rabies control strategies such as oral rabies vaccination (ORV) are under evaluation. As an initial quantification of the potential cost savings for a control program, the collection of selected rabies cost data was pilot tested for five counties in New York State (NYS) in a three-year period. METHODS: Rabies costs reported to NYS from the study counties were computerized and linked to a human rabies exposure database. Consolidated costs by county and year were averaged and compared. RESULTS: Reported rabies-associated costs for all rabies variants totalled 2.1million,forhumanrabiespostexposureprophylaxes(PEP)(90.92.1 million, for human rabies postexposure prophylaxes (PEP) (90.9%), animal specimen preparation/shipment to laboratory (4.7%), and pet vaccination clinics (4.4%). The proportion that may be attributed to raccoon rabies control was 37% (784,529). Average costs associated with the raccoon variant varied across counties from 440to440 to 1,885 per PEP, 14to14 to 44 per specimen, and 0.33to0.33 to 15 per pet vaccinated. CONCLUSION: Rabies costs vary widely by county in New York State, and were associated with human population size and methods used by counties to estimate costs. Rabies cost variability must be considered in developing estimates of possible ORV-related cost savings. Costs of PEPs and specimen preparation/shipments, as well as the costs of pet vaccination provided by this study may be valuable for development of more realistic scenarios in economic modelling of ORV costs versus benefits

    Li@C60 as a multi-state molecular switch

    Get PDF
    R.S. acknowledges financial support from the Scottish Funding Council through SRD-Grant (HR07003). E.E.B.C. gratefully acknowledges Idea International Inc., Sendai, for providing samples of [Li@C60]+(PF6)–. H.J.C. and M.S. acknowledge financial support of EPSRC DTG studentships (EP/M508214/1 and EP/N509644/1, respectively).The field of molecular electronics aims at advancing the miniaturization of electronic devices, by exploiting single molecules to perform the function of individual components. A molecular switch is defined as a molecule that displays stability in two or more states (e.g. “on” and “off” involving conductance, conformation etc.) and upon application of a controlled external perturbation, electric or otherwise, undergoes a reversible change such that the molecule is altered. Previous work has shown multi-state molecular switches with up to four and six distinct states. Using low temperature scanning tunnelling microscopy and spectroscopy, we report on a multi-state single molecule switch using the endohedral fullerene Li@C60 that displays 14 molecular states which can be statistically accessed. We suggest a switching mechanism that relies on resonant tunnelling via the superatom molecular orbitals (SAMOs) of the fullerene cage as a means of Li activation, thereby bypassing the typical vibronic excitation of the carbon cage that is known to cause molecular decomposition.Publisher PDFPeer reviewe

    Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study

    Get PDF
    BACKGROUND: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria. METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced. RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes. CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future

    Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Summary: Background Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10–24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10–24 years by age group (10–14 years, 15–19 years, and 20–24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10–24 years with that in children aged 0–9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10–24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings In 2019 there were 1·49 million deaths (95% uncertainty interval 1·39–1·59) worldwide in people aged 10–24 years, of which 61% occurred in males. 32·7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32·1% were due to communicable, nutritional, or maternal causes; 27·0% were due to non-communicable diseases; and 8·2% were due to self-harm. Since 1950, deaths in this age group decreased by 30·0% in females and 15·3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10–14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15–19 years was 1·3% in males and 1·6% in females, almost half that of males aged 1–4 years (2·4%), and around a third less than in females aged 1–4 years (2·5%). The proportion of global deaths in people aged 0–24 years that occurred in people aged 10–24 years more than doubled between 1950 and 2019, from 9·5% to 21·6%. Interpretation Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10–24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe
    corecore