

► Additional material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/ injuryprev-2019-043531).

For numbered affiliations see end of article.

Correspondence to

Received 14 October 2019 Revised 29 November 2019 Accepted 6 December 2019 Published Online First 24 August 2020

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ.

To cite: James SL, Castle CD, Dingels ZV, *et al. Inj Prev* 2020;**26**:i125–i153.

Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study

Spencer L James,¹ Chris D Castle,¹ Zachary V Dingels,¹ Jack T Fox,¹ Erin B Hamilton,¹ Zichen Liu,¹ Nicholas L S Roberts,¹ Dillon O Sylte,¹ Gregory J Bertolacci,¹ Matthew Cunningham,¹ Nathaniel J Henry,¹ Kate E LeGrand,¹ Ahmed Abdelalim,² Ibrahim Abdollahpour,³ Rizwan Suliankatchi Abdulkader,⁴ Aidin Abedi,⁵ Kedir Hussein Abegaz,^{6,7} Akine Eshete Abosetugn,⁸ Abdelrahman I Abushouk,⁹ Oladimeji M Adebayo,¹⁰ Jose C Adsuar,¹¹ Shailesh M Advani,^{12,13} Marcela Agudelo-Botero, ¹⁴ Tauseef Ahmad, ^{15,16} Muktar Beshir Ahmed, ¹⁷ Rushdia Ahmed, ^{18,19} Miloud Taki Eddine Aichour, ²⁰ Fares Alahdab, ²¹ Fahad Mashhour Alanezi, ²² Niguse Meles Alema, ²³ Biresaw Wassihun Alemu, ^{24,25} Suliman A Alghnam,²⁶ Beriwan Abdulqadir Ali,²⁷ Saqib Ali,²⁸ Cyrus Alinia,²⁹ Vahid Alipour,^{30,31} Syed Mohamed Aljunid,^{32,33} Amir Almasi-Hashiani,³⁴ Nihad A Almasri,³⁵ Khalid Altirkawi,³⁶ Yasser Sami Abdeldayem Amer,^{37,38} Catalina Liliana Andrei,³⁹ Alireza Ansari-Moghaddam,⁴⁰ Carl Abelardo T Antonio,^{41,42} Davood Anvari,^{43,44} Seth Christopher Yaw Appiah,^{45,46} Jalal Arabloo,³⁰ Morteza Arab-Zozani,⁴⁷ Zohreh Arefi,⁴⁸ Olatunde Aremu,⁴⁹ Filippo Ariani,⁵⁰ Amit Arora, ^{51,52} Malke Asaad, ⁵³ Beatriz Paulina Ayala Quintanilla, ^{54,55} Getinet Ayano, ⁵⁶ Martin Amogre Ayanore, ⁵⁷ Ghasem Azarian, ⁵⁸ Alaa Badawi, ^{59,60} Ashish D Badiye, ⁶¹ Atif Amin Baig, ^{62,63} Mohan Bairwa, ^{64,65} Ahad Bakhtiari, ⁶⁶ Arun Balachandran, ^{67,68} Maciej Banach, ^{69,70} Srikanta K Banerjee, ⁷¹ Palash Chandra Banik, ⁷² Amrit Banstola, ⁷³ Suzanne Lyn Barker-Collo,⁷⁴ Till Winfried Bärnighausen,^{75,76} Akbar Barzegar,⁷⁷ Mohsen Bayati, ⁷⁸ Shahrzad Bazargan-Hejazi, ^{79,80} Neeraj Bedi, ^{81,82} Monsen Bayati, ¹² Snanrzad Bazargan-Hejazi, ^{13,00} Neeraj Bedi, ^{01,02} Masoud Behzadifar, ⁸³ Habte Belete, ⁸⁴ Derrick A Bennett, ⁸⁵ Isabela M Bensenor, ⁸⁶ Kidanemaryam Berhe, ⁸⁷ Akshaya Srikanth Bhagavathula, ^{88,89} Pankaj Bhardwaj, ^{90,5} Anusha Ganapati Bhat, ⁹² Krittika Bhattacharyya, ^{93,94} Zulfiqar A Bhutta, ^{95,96} Sadia Bibi, ⁹⁷ Ali Bijani, ⁹⁸ Archith Boloor, ⁹⁹ Guilherme Borges, ¹⁰⁰ Rohan Borschmann, ^{101,102} Antonio Maria Borzì, ¹⁰³ Soufiane Boufous, ¹⁰⁴ Dejana Braithwaite, ¹⁰⁵ Nikolay Ivanovich Briko, ¹⁰⁶ Traolach Brugha, ¹⁰⁷ Shyam S Budhathoki, ¹⁰⁸ Josip Car, ^{109,110} Rosario Cárdenas, ¹¹¹ Félix Carvalho, ¹¹² João Mauricio Castaldelli-Maia, ¹¹³ Carlos A Castañeda-Orjuela, ^{114,115} Giulio Castelpietra, ^{116,117} Ferrán Catalá-López, ^{118,119} Ester Cerin, ^{120,121} Joht S Chandan, ¹²² Jens Robert Chapman, ¹²³ Vijay Kumar Chattu, ¹²⁴ Soosanna Kumary Chattu, ¹²⁵ Irini Chatziralli, ^{126,127} Neha Chaudhary, ^{128,129} Daniel Youngwhan Cho, ¹³⁰ Jee-Young J Choi, ¹³¹ Mohiuddin Ahsanul Kabir Chowdhury, ^{132,133} Devasahayam J Christopher, ¹³⁴ Dinh-Toi Chu, ¹³⁵ Flavia M Cicuttini, ¹³⁶ João M Coelho, ¹³⁷ Vera M Costa, ¹¹² Saad M A Dahlawi, ¹³⁸ Ahmad Daryani, ¹³⁹ Claudio Alberto Dávila-Cervantes, ¹⁴⁰ Diego De Leo, ¹⁴¹ Feleke Mekonnen Demeke, ¹⁴² Gebre Teklemariam Demoz, ^{143,144} Desalegn Getnet Demsie, ²³ Kebede Deribe, ^{145,146} Rupak Desai, ¹⁴⁷ Mostafa Dianati Nasab,¹⁴⁸ Diana Dias da Silva,¹⁴⁹ Zahra Sadat Dibaji Forooshani,¹⁵⁰ Hoa Thi Do,¹⁵¹ Kerrie E Doyle,¹⁵² Tim Robert Driscoll,¹⁵³ Eleonora Dubljanin,¹⁵⁴ Bereket Duko Adema,^{155,156} Arielle Wilder Eagan,^{157,158} Demelash Abewa Elemineh,¹⁵⁹

Shaimaa I El-Jaafary,² Ziad El-Khatib,^{160,161} Christian Lycke Ellingsen,^{162,163} Maysaa El Sayed Zaki,¹⁶⁴ Sharareh Eskandarieh,¹⁶⁵ Oghenowede Eyawo,^{166,167} Pawan Sirwan Faris,^{168,169} Andre Faro,¹⁷⁰ Farshad Farzadfar,¹⁷¹ Seyed-Mohammad Fereshtehnejad,^{172,173} Eduarda Fernandes,¹⁷⁴ Pietro Ferrara,¹⁷⁵ Florian Fischer,¹⁷⁶ Morenike Oluwatoyin Folayan,¹⁷⁷ Artem Alekseevich Fomenkov,¹⁷⁸ Masoud Foroutan,¹⁷⁹ Joel Msafiri Francis,¹⁸⁰ Richard Charles Franklin,^{181,182} Takeshi Fukumoto,^{183,184} Biniyam Sahiledengle Geberemariyam, ¹⁸⁵ Hadush Gebremariam, ⁸⁷ Ketema Bizuwork Gebremedhin, ¹⁸⁶ Leake G Gebremeskel, ^{143,187} Gebreamlak Gebremedhn Gebremeskel, ^{188,189} Berhe Gebremichael, ¹⁹⁰ Getnet Azeze Gedefaw, ^{191,192} Birhanu Geta, ¹⁹³ Agegnehu Bante Getenet, ¹⁹⁴ Mansour Ghafourifard, ¹⁹⁵ Farhad Ghamari, ¹⁹⁶ Reza Ghanei Gheshlagh, ¹⁹⁷ Asadollah Gholamian, ^{198,199} Syed Amir Gilani, ^{200,201} Tiffany K Gill, ²⁰² Amir Hossein Goudarzian, ²⁰³ Alessandra C Goulart, ^{204,205} Ayman Grada, ²⁰⁶ Michal Grivna, ²⁰⁷ Rafael Alves Guimarães,²⁰⁸ Yuming Guo,^{136,209} Gaurav Gupta,²¹⁰ Juanita A Haagsma,²¹¹ Brian James Hall,²¹² Randah R Hamadeh,²¹³ Samer Hamidi,²¹⁴ Demelash Woldeyohannes Handiso,¹⁸⁵ Josep Maria Haro,^{215,216} Amir Hasanzadeh,^{217,218} Shoaib Hassan,²¹⁹ Soheil Hassanipour,^{220,221} Hadi Hassankhani,^{222,223} Hamid Yimam Hassen,^{224,225} Rasmus Havmoeller,²²⁶ Delia Hendrie,⁵⁶ Fatemeh Heydarpour,²²⁷ Martha Híjar,^{228,229} Hung Chak Ho,²³⁰ Chi Linh Hoang,²³¹ Michael K Hole,²³² Ramesh Holla,²³³ Naznin Hossain,^{234,235} Mehdi Hosseinzadeh,^{236,237} Sorin Hostiuc,^{238,239} Guoqing Hu,²⁴⁰ Segun Emmanuel Ibitoye, ²⁴¹ Olayinka Stephen Ilesanmi, ²⁴² Leeberk Raja Inbaraj, ²⁴³ Seyed Sina Naghibi Irvani,²⁴⁴ M Mofizul Islam,²⁴⁵ Sheikh Mohammed Shariful Islam,^{246,247} Rebecca Q Ivers,²⁴⁸ Mohammad Ali Jahani,²⁴⁹ Mihajlo Jakovljevic,²⁵⁰ Farzad Jalilian,²⁵¹ Sudha Jayaraman,²⁵² Achala Upendra Jayatilleke,^{253,254} Ravi Prakash Jha,²⁵⁵ Yetunde O John-Akinola,²⁵⁶ Jost B Jonas,^{257,258} Achala Upendra Jayatilleke, ^{253,254} Ravi Prakash Jha, ²⁵⁵ Yetunde O John-Akinola, ²⁵⁰ Jost B Jonas, ^{237,230} Kelly M Jones, ²⁵⁹ Nitin Joseph, ²⁶⁰ Farahnaz Joukar, ²²⁰ Jacek Jerzy Jozwiak, ²⁶¹ Suresh Banayya Jungari, ²⁶² Mikk Jürisson, ²⁶³ Ali Kabir, ²⁶⁴ Amaha Kahsay, ⁸⁷ Leila R Kalankesh, ²⁶⁵ Rohollah Kalhor, ^{266,267} Teshome Abegaz Kamil, ²⁶⁸ Tanuj Kanchan, ²⁶⁹ Neeti Kapoor, ⁶¹ Manoochehr Karami, ²⁷⁰ Amir Kasaeian, ^{271,272} Hagazi Gebremedhin Kassaye, ²³ Taras Kavetskyy, ^{273,274} Gbenga A Kayode, ^{275,276} Peter Njenga Keiyoro, ²⁷⁷ Abraham Getachew Kelbore, ²⁷⁸ Yousef Saleh Khader, ²⁷⁹ Morteza Abdullatif Khafaie, ²⁸⁰ Nauman Khalid, ²⁸¹ Ibrahim A Khalil, ²⁸² Rovshan Khalilov, ²⁸³ Maseer Khan, ²⁸⁴ Ejaz Ahmad Khan, ²⁸⁵ Junaid Khan, ²⁸⁶ Tripti Khanna, ^{287,288} Salman Khazaei, ²⁷⁰ Habibolah Khazaie, ²⁸⁹ Roba Khundkar, ²⁹⁰ Daniel N Kiirithio, ²⁹¹ Young-Eun Kim, ²⁹² Yun Jin Kim, ²⁹³ Daniel Kim, ²⁹⁴ Sezer Kisa, ²⁹⁵ Adnan Kisa, ²⁹⁶ Hamidreza Komaki, ^{297,298} Shivakumar K M Kondlahalli, ²⁹⁹ Ali Koolivand, ³⁰⁰ Vladimir Andreevich Korshunov, ¹⁰⁶ Ai Koyanagi, ^{301,302} Moritz L G Kraemer ^{303,304} Kewal Krishan ³⁰⁵ Barthelemy Kuate Defo ^{306,307} Burcu Kucuk Bicer ^{308,309} Moritz U G Kraemer, ^{303,304} Kewal Krishan, ³⁰⁵ Barthelemy Kuate Defo, ^{306,307} Burcu Kucuk Bicer, ^{308,309} Nuworza Kugbey, ^{310,311} Nithin Kumar, ³¹² Manasi Kumar, ^{313,314} Vivek Kumar, ³¹⁵ Narinder Kumar, ³¹⁶ Girikumar Kumaresh, ³¹⁷ Faris Hasan Lami, ³¹⁸ Van C Lansingh, ^{319,320} Savita Lasrado, ³²¹ Arman Latifi, ³²² Paolo Lauriola,³²³ Carlo La Vecchia,³²⁴ Janet L Leasher,³²⁵ Shaun Wen Huey Lee,^{326,327} Shanshan Li,¹³⁶ Xuefeng Liu, ³²⁸ Alan D Lopez, ^{1,102,329} Paulo A Lotufo, ³³⁰ Ronan A Lyons, ³³¹ Daiane Borges Machado, ^{332,333} Mohammed Madadin, ³³⁴ Muhammed Magdy Abd El Razek, ³³⁵ Narayan Bahadur Mahotra, ³³⁶ Marek Majdan, ³³⁷ Azeem Majeed, ³³⁸ Venkatesh Maled, ^{339,340} Deborah Carvalho Malta, ³⁴¹ Navid Manafi, ^{342,343} Amir Manafi, ³⁴⁴ Ana-Laura Manda, ³⁴⁵ Narayana Manjunatha, ³⁴⁶ Fariborz Mansour-Ghanaei, ²²⁰ Mohammad Ali Mansournia, ³⁴⁷ Joemer C Maravilla, ³⁴⁸ Amanda J Mason-Jones, 349 Seyedeh Zahra Masoumi, 350 Benjamin Ballard Massenburg, 130 Pallab K Maulik,^{351,352} Man Mohan Mehndiratta,^{353,354} Zeleke Aschalew Melketsedik,¹⁹⁴ Peter T N Memiah,³⁵⁵ Walter Mendoza,³⁵⁶ Ritesh G Menezes,³⁵⁷ Melkamu Merid Mengesha,³⁵⁸ Tuomo J Meretoja, ^{359,360} Atte Meretoja, ^{361,362} Hayimro Edemealem Merie, ³⁶³ Tomislav Mestrovic, ^{364,365} Bartosz Miazgowski, ^{366,367} Tomasz Miazgowski, ³⁶⁸ Ted R Miller, ^{56,369} G K Mini, ^{370,371} Andreea Mirica, ^{372,373} Erkin M Mirrakhimov, ^{374,375} Mehdi Mirzaei-Alavijeh, ²⁵¹ Prasanna Mithra, ²⁶⁰ Babak Moazen, ^{376,377} Masoud Moghadaszadeh, ^{378,379} Efat Mohamadi, ³⁸⁰ Yousef Mohammad, ³⁸¹ Aso Mohammad Darwesh, ³⁸² Abdollah Mohammadian-Hafshejani, ³⁸³ Reza Mohammadpourhodki, ³⁸⁴ Shafiu Mohammed, ^{75,385} Jemal Abdu Mohammed, ³⁸⁶ Farnam Mohebi, ^{171,387} Mohammad A Mohseni Bandpei, ³⁸⁸ Mariam Molokhia, ³⁸⁹

Original research

Lorenzo Monasta, ³⁹⁰ Yoshan Moodley, ³⁹¹ Masoud Moradi, ^{392,393} Ghobad Moradi, ^{394,395} Maziar Moradi-Lakeh, ³⁹⁶ Rahmatollah Moradzadeh, ³⁴ Lidia Morawska, ³⁹⁷ Ilais Moreno Velásquez, ³⁹⁸ Shane Douglas Morrison, ¹³⁰ Tilahun Belete Mossie, ³⁹⁹ Atalay Goshu Muluneh, ⁴⁰⁰ Kamarul Imran Musa, ⁴⁰¹ Ghulam Mustafa, ^{402,403} Mehdi Naderi, ⁴⁰⁴ Ahamarshan Jayaraman Nagarajan, ^{405,406} Gurudatta Naik, ⁴⁰⁷ Mukhammad David Naimzada, ^{408,409} Farid Najafi, ⁴¹⁰ Vinay Nangia, ⁴¹¹ Bruno Ramos Nascimento, ⁴¹² Morteza Naserbakht, ^{413,414} Vinod Nayak, ⁴¹⁵ Javad Nazari, ^{416,417} Duduzile Edith Ndwandwe, ⁴¹⁸ Ionut Negoi, ^{419,420} Josephine W Ngunjiri, ⁴²¹ Trang Huyen Nguyen, ²³¹ Cuong Tat Nguyen, ⁴²² Diep Ngoc Nguyen,^{423,424} Huong Lan Thi Nguyen,⁴²² Rajan Nikbakhsh,^{425,426} Dina Nur Anggraini Ningrum, ^{427,428} Chukwudi A Nnaji, ^{418,429} Richard Ofori-Asenso, ^{430,431} Felix Akpojene Ogbo, ⁴³² Onome Bright Oghenetega, ⁴³³ In-Hwan Oh, ⁴³⁴ Andrew T Olagunju, ^{435,436} Tinuke O Olagunju, ⁴³⁷ Ahmed Omar Bali, ⁴³⁸ Obinna E Onwujekwe, ⁴³⁹ Heather M Orpana, ^{440,441} Erika Ota, ⁴⁴² Nikita Otstavnov, ^{408,443} Stanislav S Otstavnov, ^{408,444} Mahesh P A, ⁴⁴⁵ Jagadish Rao Padubidri, ⁴⁴⁶ Smita Pakhale,⁴⁴⁷ Keyvan Pakshir,⁴⁴⁸ Songhomitra Panda-Jonas,⁴⁴⁹ Eun-Kee Park,⁴⁵⁰ Sangram Kishor Patel,^{451,452} Ashish Pathak,^{453,454} Sanghamitra Pati,⁴⁵⁵ Kebreab Paulos,⁴⁵⁶ Amy E Peden,^{182,457} Veincent Christian Filipino Pepito,⁴⁵⁸ Jeevan Pereira,⁴⁵⁹ Michael R Phillips,^{460,461} Roman V Polibin,⁴⁶² Suzanne Polinder,²¹¹ Farshad Pourmalek,⁴⁶³ Akram Pourshams,⁴⁶⁴ Hossein Poustchi,⁴⁶⁴ Swayam Prakash,⁴⁶⁵ Dimas Ria Angga Pribadi,⁴⁶⁶ Parul Puri,²⁸⁶ Zahiruddin Quazi Syed,⁹¹ Navid Rabiee,⁴⁶⁷ Mohammad Rabiee,⁴⁶⁸ Amir Radfar,^{469,470} Anwar Rafay,⁴⁷¹ Ata Rafiee,⁴⁷² Alireza Rafiei,^{473,474} Fakher Rahim,^{475,476} Siavash Rahimi,⁴⁷⁷ Amir Kadiar, Aliwar Kalay, Ata Kalee, Alieza Kale, Kale Jennifer Rickard, 491,492 Carlos Miguel Rios González, 493,494 Leonardo Roever, 495 Luca Ronfani, 390 Gholamreza Roshandel,^{464,496} Basema Saddik,⁴⁹⁷ Hamid Safarpour,⁴⁹⁸ Mahdi Safdarian,^{499,500} S Mohammad Sajadi,⁵⁰¹ Payman Salamati,⁵⁰⁰ Marwa R Rashad Salem,⁵⁰² Hosni Salem,⁵⁰³ Inbal Salz,⁵⁰⁴ Abdallah M Samy,⁵⁰⁵ Juan Sanabria,^{506,507} Lidia Sanchez Riera,^{508,509} Milena M Santric Milicevic,^{510,511} Abdur Razzaque Sarker,⁵¹² Arash Sarveazad,⁵¹³ Brijesh Sathian,^{514,515} Monika Sawhney,⁵¹⁶ Mehdi Sayyah,⁵¹⁷ David C Schwebel,⁵¹⁸ Soraya Seedat,⁵¹⁹ Subramanian Senthilkumaran,⁵²⁰ Seyedmojtaba Seyedmousavi,⁵²¹ Feng Sha, ⁵²² Faramarz Shaahmadi, ⁵²³ Saeed Shahabi, ⁵²⁴ Masood Ali Shaikh, ⁵²⁵ Mehran Shams-Beyranvand, ⁵²⁶ Aziz Sheikh, ^{527,528} Mika Shigematsu, ⁵²⁹ Jae II Shin, ^{530,531} Rahman Shiri, ⁵³² Soraya Siabani, ^{533,534} Inga Dora Sigfusdottir, ^{535,536} Jasvinder A Singh, ^{537,538} Pankaj Kumar Singh, ⁵³⁹ Dhirendra Narain Sinha,^{540,541} Amin Soheili,^{542,543} Joan B Soriano,^{544,545} Muluken Bekele Sorrie,⁵⁴⁶ Ireneous N Soyiri,^{547,548} Mark A Stokes,⁵⁴⁹ Mu'awiyyah Babale Sufiyan,⁵⁵⁰ Bryan L Sykes,⁵⁵¹ Rafael Tabarés-Seisdedos, 552,553 Karen M Tabb, 554 Biruk Wogayehu Taddele, 555 Yonatal Mesfin Tefera, 556,557 Arash Tehrani-Banihashemi,^{396,558} Gebretsadkan Hintsa Tekulu,⁵⁵⁹ Ayenew Kassie Tesema Tesema,⁵⁶⁰ Berhe Etsay Tesfay,⁵⁶¹ Rekha Thapar,³¹² Mariya Vladimirovna Titova,^{178,562} Kenean Getaneh Tlaye,⁵⁶³ Hamid Reza Tohidinik,^{347,564} Roman Topor-Madry,^{565,566} Khanh Bao Tran,^{567,568} Bach Xuan Tran,⁵⁶⁹ Jaya Prasad Tripathy,⁹⁰ Alexander C Tsai,^{570,571} Aristidis Tsatsakis,⁵⁷² Lorainne Tudor Car,⁵⁷³ Irfan Ullah,^{574,575} Saif Ullah,⁹⁷ Bhaskaran Unnikrishnan,²⁶⁰ Era Upadhyay,⁵⁷⁶ Olalekan A Uthman,⁵⁷⁷ Pascual R Valdez,^{578,579} Tommi Juhani Vasankari, ⁵⁸⁰ Yousef Veisani, ⁵⁸¹ Narayanaswamy Venketasubramanian, ^{582,583} Francesco S Violante, ^{584,585} Vasily Vlassov, ⁵⁸⁶ Yasir Waheed, ⁵⁸⁷ Yuan-Pang Wang, ¹¹³ Taweewat Wiangkham, ⁵⁸⁸ Haileab Fekadu Wolde, ⁴⁰⁰ Dawit Habte Woldeyes, ⁵⁸⁹ Temesgen Gebeyehu Wondmeneh, ³⁸⁶ Adam Belay Wondmieneh, ^{186,590} Ai-Min Wu, ⁵⁹¹ Grant M A Wyper, ⁵⁹² Rajaram Yadav, ²⁸⁶ Ali Yadollahpour, ⁵⁹³ Yuichiro Yano, ⁵⁹⁴ Sanni Yaya, ⁵⁹⁵ Vahid Yazdi-Feyzabadi, ^{596,597} Pengpeng Ye, ⁵⁹⁸ Paul Yip, ^{599,600} Engida Yisma, ⁶⁰¹ Naohiro Yonemoto, ⁶⁰² Seok-Jun Yoon, ²⁹² Yoosik Youm, ⁶⁰³ Mustafa Z Younis, ^{604,605} Zabihollah Yousefi, ^{606,607} Chuanhua Yu,^{608,609} Yong Yu,⁶¹⁰ Telma Zahirian Moghadam,^{30,611} Zoubida Zaidi,⁶¹² Sojib Bin Zaman,^{132,613} Mohammad Zamani,⁶¹⁴ Hamed Zandian,^{611,615} Fatemeh Zarei,⁶¹⁶ Zhi-Jiang Zhang,⁶¹⁷ Yunquan Zhang,^{618,619}

Arash Ziapour,⁵³³ Sanjay Zodpey,⁶²⁰ Rakhi Dandona,^{1,329,621} Samath Dhamminda Dharmaratne,^{1,329,622} Simon I Hay,^{1,329} Ali H Mokdad,^{1,329} David M Pigott,^{1,329} Robert C Reiner,^{1,329} Theo Vos^{1,329}

ABSTRACT

Background While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria.

Methods In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced.

Results GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes.

Conclusions GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.

INTRODUCTION

The Global Burden of Disease (GBD) study is a comprehensive assessment of population health loss. GBD has expanded in scope since its original release in 1994 (GBD 1990) and was most recently updated in autumn 2018 (GBD 2017).^{1–7} Each update of the study has provided updated results through the most recent year of data availability as well as increasingly refined detail in terms of locations, age groups and causes. In addition, GBD incorporates new data as well as updated methods for each annual release that represent the expanding complexity of the study. Cumulatively, the increasing volume of data and increasingly sophisticated estimation methods have necessitated near-continual refinements in terms of data processing, statistical modelling, computational storage and processing as well as global collaboration with the over 4000 GBD collaborators in over 140 countries and territories.

Historically, injuries have formed one of the three broad cause groups in the GBD cause hierarchy alongside the other two main groups of health loss (communicable, maternal, neonatal and nutritional diseases; non-communicable diseases). Not surprisingly, there is considerable variation in how morbidity and mortality are estimated across different causes in the GBD hierarchy and study design. The methods for estimating morbidity and mortality from injuries have evolved over time through the most recent release of GBD 2017. Historically, there have been certain challenges in injuries burden estimation, some of which have been addressed and updated over time, and some of which remain as methodological challenges to address as population health measurement develops more sophisticated modelling strategies. For example, methodological challenges that have been identified over the past three decades in population health research have included obtaining data in data-sparse, burdenheavy areas of the world, developing adjustments for ill-defined causes of death, separately estimating *cause* of injury from the bodily harm that results from an injury event and adjusting for known biases in data, such as underestimation in sexual violence data.^{3 8 9} Cumulatively, the global injuries research community has developed a wide array of methodological innovations and advancements to overcome many of these challenges, although undoubtedly the science will continue to advance as higherquality datasets become available, as modelling methods improve and as computational processing power becomes more accessible to population health research groups around the world.

Many studies have been published based on different releases of the GBD study, ranging from studies on intentional injuries in the eastern Mediterranean to detailed assessments of traumatic brain injury and spinal cord injury disability rates on a global scale.^{10 11} While this array of published GBD injury studies demonstrates a broad spectrum of expert knowledge on specific injuries or specific geographies or both, it is also critical to recognise that population health is a rapidly evolving, collaborative science that has benefited from near-continual improvements even through the current updates being implemented for GBD 2019. As a result, it should benefit the scientific enterprise to focus on publishing the most updated results with perspective on global, demographic and temporal patterns, and on sharing iterative updates on the current state of the science of GBD injuries burden estimation. The goal of this study is to comprehensively review and report methods used for GBD 2017 and associated publications that have gone through extensive collaboratorreview and peer-review processes.

METHODS GBD 2017 study

GBD is predicated on the principle that every case of death and disability in the population should be systematically identified and accounted for in the formulation of global disease and injury burden. On the side of mortality, every death that occurs in the population should have one underlying cause of death which can be assigned to a cause in a mutually exclusive, collectively exhaustive hierarchy of diseases and injuries that can cause death. These data can be used in a method described below to calculate cause-specific mortality rates and years of life lost. For morbidity, every non-fatal case of disease or injury should have an amount of disability assigned for some period of time. These data can be used in a process described below to estimate the incidence, prevalence and years lived with disability. Summing morbidity and mortality from some cause form the burden from that cause, expressed as disability-adjusted life-years (DALY). For causes with known risk factors, some portion of this burden may be explained by exposure to that risk factor. Across causes within some population, it is also a principle of GBD that the sum of all cause-specific deaths should equal all-cause mortality in the population, and that rates of incidence, prevalence, remission and cause-specific mortality can be reconciled with one another such that all death and disability in a population is internally consistent across causes and geographies. As examples, the sum of different types of road injury cases must sum up to overall

road injuries, and the sum of deaths from different injuries in a given country must sum up to the estimate of all-injury deaths. The principle of internal consistency extends to populations used in GBD, where every birth, death and net migration must be accounted for in the population estimates which form the denominators of GBD results. While there is immense complexity in the process summarised above, it is important to begin with these core principles which govern the computation processes at the heart of GBD burden estimation. A summarised overview of key GBD 2017 methods is also provided in online supplementary appendix 1.

GBD study design and hierarchies

GBD study design, including cause-specific methods, is described in a high level of detail in associated publications.²⁻⁷ In addition to the injury-focused methods described in this paper, it is important to define hierarchies used in the GBD study design. In particular, GBD 2017 was built around a location hierarchy where different subnational locations (eg, US states, India states, China provinces) which form a composite of a national location (eg, the USA, India, China). National locations are aggregated to form GBD regions, which are then aggregated to form GBD super regions. These designations affect the modelling structure and utilisation of location random effects, processes which are described in more detail later. The country-level and regionallevel GBD location hierarchy used in GBD 2017 is provided in online supplementary appendix table 1. In addition to locations, GBD processes are conducted to produce estimates for every one of 22 age groups, male and female sex and across 28 years from 1990 to 2017 (inclusive). Age-standardised, all-age and combined sex results are also computed for each GBD result. Exceptions exist to the rules above, for example, self-harm is not permitted to occur in the 0-6 days (early neonatal) age group in the GBD age hierarchy. There are no sex restrictions placed on any GBD injury causes, although these restrictions exist for other GBD causes, such as cancers like prostate, cervical and uterine being related to one sex.

GBD injury classification

In the GBD cause hierarchy, injuries are part of the first level of the GBD cause hierarchy, which consists of three broad groups: communicable, maternal, neonatal and nutritional diseases; non-communicable diseases and injuries. Additional levels of the GBD cause hierarchy provide additional detail. The hierarchy of injuries in GBD is provided in table 1. The organisation of the hierarchy has implications both in terms of how results are produced and in terms of analytical and processing steps which are discussed in more detail below. Case definitions including International Classification of Diseases (ICD) codes used to identify injury deaths and cases are provided in table 2.

GBD separates the concept of cause of injury from nature of injury. Cause of injury (eg, road injuries, falls, drowning) have historically been used for assigning cause of death as opposed to the 'nature' of injury, which more directly specifies the pathology that resulted in death. For example, an individual who falls, fractures his or her hip, undergoes surgery and then develops hospital-acquired pneumonia and dies while hospitalised would still have a fall as the underlying cause of death, regardless of whether sepsis or some other disease process leads to death more proximally in the chain of events. In this individual, the 'nature' of injury would have been specified as a hip fracture, since it is the bodily injury that would dictate the disability this person experiences. Since it is evident that a hip fracture is more

Table 1 Global Burden of Disease cause-of-injury hierarchy

Transport injuries	Unintentional injuries	Self-harm and interpersonal violence	Forces of nature, conflict and terrorism and executions and police conflict
Road injuries	Falls	Self-harm	Exposure to forces of nature
Pedestrian road injuries	Drowning	Self-harm by firearm	Conflict and terrorism
Cyclist road injuries	Fire, heat and hot substances	Self-harm by other specified means	Executions and police conflict
Motorcyclist road injuries	Poisonings	Interpersonal violence	
Motor vehicle road injuries	Poisoning by carbon monoxide	Assault by firearm	
Other road injuries	Poisoning by other means	Assault by sharp object	
Other transport injuries	Exposure to mechanical forces	Assault by other means	
	Unintentional firearm injuries		
	Unintentional suffocation		
	Other exposure to mechanical forces		
	Adverse effects of medical treatment		
	Animal contact		
	Venomous animal contact		
	Non-venomous animal contact		
	Foreign body		
	Pulmonary aspiration and foreign body in airway		
	Foreign body in eyes		
	Foreign body in other body part		
	Environmental heat and cold exposure		
	Other unintentional injuries		

disabling than a mild skin abrasion, it is important for measuring non-fatal burden to consider both the cause and the nature in the formulation of complete injury burden. A full list of nature of injury is provided in table 3.

Cause-specific mortality and years of life lost

As described above, cause-specific mortality is measured for every cause of injury in the GBD cause hierarchy with the exception of foreign body in the ear and sexual violence, which undergo only non-fatal burden estimation (described in more detail below). GBD adheres to five general principles for measuring causespecific mortality, which are described in more detail elsewhere but are summarised as follows.¹² First, GBD 2017 identifies all available data. For injuries, this includes vital registration (VR), vital registration samples, verbal autopsy (VA), police records and mortuary/hospital data. VR is the preferred data source but is not available in every location in the GBD location hierarchy. Prior VA research has demonstrated that VA is more accurate for certain injury causes than it is for certain diseases.¹³ Police data undergo additional validity checks to ensure that systematic under-reporting does not occur in comparison to VR data, which is described in more detail in a related publication.⁶ The second general principle relevant to injury mortality estimation is maximising comparability and quality of the dataset. For the purposes

Child causes	ICD codes	Case definition (fatal)	Case definition (non-fatal)
Self-harm	ICD9: E950-E959 ICD10: X60-X64.9, X66-X84.9, Y87.0	Deliberate bodily damage inflicted on oneself resulting in death	Deliberate bodily damage inflicted on oneself with intent to kill oneself.
Self-harm by firearm	ICD9: E955-E955.9 ICD10: X72-X74.9	Deliberate bodily damage inflicted by firearm on oneself resulting in death	Deliberate bodily damage inflicted on oneself by fi without intent to kill oneself.
elf-harm by other specified means	ICD9: E950-E954, E956-E958.0, E958.2-E959 ICD10: X60-X64.9, X66-X67.9, X69-X71.9, X75- X75.9, X77-X84.9, Y87.0	Deliberate bodily damage inflicted on oneself resulting in death by means of.* Self-poisoning Medication overdose Transport incident Falling from height Hanging/strangulation *(not exhaustive)	Deliberate bodily damage inflicted on oneself with intent to kill oneself by means of:* Self-poisoning Medication overdose Transport incident Falling from height Hanging/strangulation *(not exhaustive)
oisoning	ICD9: E850.3-E858.99, E862-E869.99, E929.2 ICD10: J70.5, X40-X44.9, X47-X49.9, Y10-Y14.9, Y16-Y19.9	Death resulting from accidental exposure to a non-infectious substance which contacts the body or enters into the body via inhalation, ingestion, injection or absorption and causes deranged physiological function of body and/or cellular injury/death.	Unintentional exposure to a non-infectious substar contacts the body or enters into the body via inhal- ingestion, injection or absorption and causes derar physiological function of body and/or cellular inju-
oisoning by carbon monoxide (CO)	ICD9: E862-E862.99, E868-E869.99 ICD10: J70.5, X47-X47.9	Death from exposure to carbon monoxide (CO) as identified based on carboxyhemoglobin levels (specified based on smoking status and age) or proximity to a confirmed CO poisoning case.	Non-fatal exposure to CO as identified based on carboxyhemoglobin levels (specified based on smo and age) or proximity to a confirmed CO poisoning
pisoning by other means	ICD9: E850.3-E858.99, E866-E866.99 ICD10: X40-X44.9, X49-X49.9, Y10-Y14.9, Y16-Y19.9	Death resulting from accidental exposure to a non-infectious substance (other than CO) which contacts the body or enters into the body via inhalation, ingestion, injection or absorption and causes deranged physiological function of body and/or cellular injury/death.	Accidental exposure to a non-infectious substance than CO) which contacts the body or enters into th via inhalation, ingestion, injection or absorption ar deranged physiological function of body and/or ce death.
nimal contact	ICD9: E905-E906.99 ICD10: W52.0-W62.9, W64-W64.9, X20-X29.9	Death resulting from unintentionally being attacked, struck, impaled, bitten, stung, crushed, exposed to or stepped on by a non-human animal.	Bodily damage resulting from unintentionally bein butted, impaled, bitten, stung, crushed, exposed to on by a non-human animal.
Venomous animal contact	ICD9: E905-E905.99 ICD10: W52.3, X20-X29.9	Death resulting from unintentionally being bitten by, stung by, or exposed to a non-human venomous animal.	Bodily damage resulting from unintentionally being stung by or exposed to a non-human venomous or animal.
Non-venomous animal contact	ICD9: E905-E906.99 ICD10: W52.0-W62.9, W64-W64.9, X20-X29.9	Death resulting from unintentionally being attacked, struck, impaled, crushed, exposed to or stepped on by a non-human animal.	Bodily damage resulting from unintentionally bein struck, impaled, crushed, exposed to or stepped on human animal.
Falls	ICD9: E880-E886.99, E888-E888.9, E929.3 ICD10: W00-W19.9	A sudden movement downwards due to slipping, tripping or other accidental movement which results in a person coming to rest inadvertently on the ground, floor or other lower level, resulting in death.	A sudden movement downward due to slipping, tri other accidental movement which results in a pers to rest inadvertently on the ground, floor or other l resulting in tissue damage.
Drowning	ICD10: W65-W70.9, W73-W74.9 ICD9: E910-E910.99	Death that occurs as a result of immersion in water or another fluid.	Non-fatal immersion or submersion in water or and regardless of whether tissue damage has occurred.

Fire, heat, and hot substances	ICD9: E890-E899.09, E924-E924.99, E929.4 ICD10: X00-X06.9, X08-X19.9	Death due to unintentional exposure to substances of high temperature sufficient to cause tissue damage on exposure, including bodily contact with hot liquid, solid or gas such as cooking stoves, smoke, steam, drinks, machinery, appliances, tools, radiators and objects radiating heat energy.	Unintentional exposure to substances of high temperature sufficient to cause tissue damage on exposure, including bodily contact with hot liquid, solid or gas such as cooking stoves, smoke, steam, drinks, machinery, appliances, tools, radiators and objects radiating heat energy.
Road injuries	ICD9: E800.3, E801.3, E802.3, E803.3, E804.3, E805.3, E806.3, E807.3, E810.0-E810.6, E811.0-E811.7, E812.0-E812.7, E813.0- E813.7, E814.0-E814.7, E815.0-E815.7, E816.0-E816.7, E817.0-E817.7, E818.0- E818.7, E819.0-E819.7, E820.0-E820.6, E821.0-E821.6, E822.0-E822.7, E823.0- E823.7, E824.0-E824.7, E825.0-E825.7, E826.0-E826.1, E826.3-E826.4, E827.0, E827.3-E827.4, E828.0, E828.4, E829.0- E829.4 ICD10: V01-V04.99, V06-V80.929, V82-V82.9, V87.2-V87.3	Interaction with an automobile, motorcycle, pedal cycle or other vehicles resulting in death.	Interaction with an automobile, motorcycle, pedal cycle or other vehicles resulting in bodily damage.
Pedestrian road injuries	ICD9: E811.7, E812.7, E813.7, E814.7, E815.7, E816.7, E817.7, E818.7, E819.7, E822.7, E823.7, E824.7, E825.7, E826.0, E827.0, E828.0, E829.0 ICD10: V01-V04.99, V06-V09.9	Interaction, as a pedestrian on the road, with an automobile, motorcycle, pedal cycle or other vehicles resulting in death.	Interaction, as a pedestrian on the road, with an automobile, motorcycle, pedal cycle or other vehicles resulting in bodily damage.
Cyclist road injuries	ICD9: E800.3, E801.3, E802.3, E803.3, E804.3, E805.3, E806.3, E807.3, E810.6, E811.6, E812.6, E813.6, E814.6, E815.6, E816.6, E817.6, E818.6, E819.6, E820.6, E821.6, E822.6, E823.6, E824.6, E825.6, E826.1 ICD10: V10-V19.9	Accident, as a cyclist or passenger on a pedal cycle, resulting in death.	Accident, as a cyclist or passenger on a pedal cycle, resulting in bodily damage.
Motorcyclist road injuries	ICD9: E810.2-E810.3, E811.2-E811.3, E812.2- E812.3, E813.2-E813.3, E814.2-E814.3, E815.2-E815.3, E816.2-E816.3, E817.2- E817.3, E818.2-E818.3, E819.2-E819.3, E820.2-E820.3, E821.2-E821.3, E822.2-	Accident, as a rider on a motorcycle, resulting in death.	Accident, as a rider on a motorcycle, resulting in bodily damage.

E822.3, E823.2-E823.3, E824.2-E824.3,

E825.2-E825.3 ICD10: V20-V29.9

can be resuscitated and has not suffered brain death.

Table 2 Continued Child causes ICD codes Case definition (fatal) Case definition (non-fatal) Motor vehicle road injuries ICD9: E810.0-E810.1, E811.0-E811.1, E812.0-Accident, as a driver or passenger in a motor vehicle, Accident, as a driver or passenger in a motor vehicle, resulting E812.1, E813.0-E813.1, E814.0-E814.1, resulting in death in bodily damage E815.0-E815.1, E816.0-E816.1, E817.0 E817.1. E818.0-E818.1. E819.0-E819.1. E820.0-E820.1, E821.0-E821.1, E822.0 E822.1, E823.0-E823.1, E824.0-E824.1, F825 0-F825 1 ICD10: V30-V79.9, V87.2-V87.3 Other road injuries ICD9: E810.4-E810.5, E811.4-E811.5, E812.4-Death resulting from being a driver or passenger of a Bodily damage resulting from being a driver or passenger of E812.5, E813.4-E813.5, E814.4-E814.5, vehicle not including automobiles, motorcycles, bicycles (ie, a vehicle not including automobiles, motorcycles, bicycles (ie, E815.4-E815.5, E816.4-E816.5, E817.4streetcar). streetcar). E817.5, E818.4-E818.5, E819.4-E819.5, E820.4-E820.5, E821.4-E821.5, E822.4 E822.5, E823.4-E823.5, E824.4-E824.5, E825.4-E825.5. E826.3-E826.4. E827.3-E827.4, E828.4, E829.4 ICD10: V80-V80.929, V82-V82.9 Other transport injuries ICD9: E800-E800.2, E801-E801.2, E802-E802.2, Interaction with a means of transport other than automobile, Interaction with a means of transport other than automobile, E803-E803.2, E804-E804.2, E805-E805.2, motorcycle, pedal cycle or other road vehicles resulting in motorcycle, pedal cycle or other road vehicles resulting in bodily F806-F806 2 F807-F807 2 F810 7 death damage E820.7, E821.7, E826.2, E827.2, E828.2, E830-E838.9, E840-E849.9, E929.1 ICD10: V00-V00.898, V05-V05.99, V81-V81.9, V83-V86.99, V88.2-V88.3, V90-V98.8 Interpersonal violence ICD9: E960-E969 Death from intentional use of physical force or power, Sustaining bodily harm in terms of tissue damage from ICD10: X85-Y08.9, Y87.1-Y87.2 threatened or actual, from another person or group not intentional use of physical force or power, threatened or actual, including military or police forces. from another person or group not including military or police forces ICD9: E965-E965.4 Sustaining bodily harm in terms of tissue damage from Physical violence by firearm Death from intentional use of physical force or power by ICD10: X93-X95.9 a firearm from another person or group or community not intentional use of physical force or power by a firearm from including military or police forces. another person or group not including military or police forces. Sustaining bodily harm in terms of tissue damage from Physical violence by sharp object ICD9: F966 Death from intentional use of physical force or power by a ICD10: X99-X99 9 sharp object from another person or group or community not intentional use of physical force or power by a sharp object from including military or police forces. another person or group not including military or police forces. Sexual violence ICD9: E960-E960.1 NA Experiencing at least one event of sexual violence in the last ICD10: Y05-Y05.9 year, where sexual violence is defined as any sexual assault, including both penetrative sexual violence (rape) and nonpenetrative sexual violence (other forms of unwanted sexual touching). ICD9: E961-E964, E965.5-E965.9, E967-E969 Death from intentional use of physical force or power by Sustaining bodily harm in terms of tissue damage from Physical violence by other means ICD10: X85-X92.9, X96-X98.9, Y00-Y04.9, Y06an object other than a firearm or sharp object from another intentional use of physical force or power by an object other Y08 9 Y87 1-Y87 2 person or group or community not including military or than a firearm or sharp object from another person or group not including military or police forces. police forces. Conflict and terrorism ICD9: E979-E979.9, E990-E999.1 Death resulting from the instrumental use of violence by Bodily harm resulting from the instrumental use of violence ICD10: U00-U03, Y36-Y38.9, Y89.1 people who identify themselves as members of a groupby people who identify themselves as members of a groupwhether this group is transitory or has a more permanent whether this group is transitory or has a more permanent identity—against another group or set of individuals, in order to achieve political, economic or social objectives. identity-against another group or set of individuals, in order to achieve political, economic or social objectives. Executions and police conflict ICD9: E970-E978 State-sanctioned executions or police-related altercations State-sanctioned executions or police-related altercations ICD10: Y35-Y35.93, Y89.0 leading to bodily damage leading to death ICD9. E907-E909 9 Exposure to forces of nature Death resulting from an unforeseen and often sudden Bodily damage resulting from an unforeseen and often sudden ICD10: X33-X38.9 natural event such as a hurricane, earthquake, tsunami or natural event such as a hurricane, earthquake, tsunami or tornado tornado. Exposure to mechanical forces ICD9: E913-E913.19, E916-E922.99, E928.1-Unintentional death resulting from contact with or threat of Unintentional bodily damage resulting from contact with or E928.7 an (in)animate object, human or plant. threat of an (in)animate object, human or plant. ICD10: W20-W38 9 W40-W43 9 W45 0-W45 2 W46-W46.2, W49-W52, W75-W76.9 Unintentional firearm injuries ICD9: E922-E922.99, E928.7 Unintentional death resulting from contact with a firearm. Unintentional bodily damage resulting from contact with a ICD10: W32-W34.9 firearm. Other exposure to mechanical forces ICD9: E916-E921.99, E928.1-E928.6 Unintentional death resulting from contact with or threat Unintentional bodily damage resulting from contact with or ICD10: W20-W31.9, W35-W38.9, W40-W43.9 of an (in)animate object (not including a firearm), human threat of an (in)animate object (not including a firearm), human W45.0-W45.2, W46-W46.2, W49-W52 or plant or plant. Unintentional death from inhaling, swallowing or aspirating Pulmonary aspiration and foreign body ICD9: 770.1-770.18. E911-E912.09. E913.8-Unintentional bodily damage from inhaling, swallowing or in airwav E913.99 extraneous materials or substance that enters the airway aspirating extraneous materials or substance that enters the ICD10: W78-W80.9, W83-W84.9 or lungs. airway or lungs. Foreign body in eyes ICD9: 360.5-360.69, 374.86, 376.6, E914-Unintentional damage from extraneous materials or substance NA in the orbital structure or eye. E914 09 ICD10: H02.81-H02.819, H44.6-H44.799 Foreign body in other body part ICD9: 709.4, E915-E915.09 Unintentional death from an extraneous material or Unintentional bodily damage from an extraneous material or ICD10: M60.2-M60.28, W44-W45, W45.3-W45.9 substance being within the body, not including the airway, substance being within the body, not including the airway, lungs or eyes. lungs or eyes.

Injuries definition: damage, defined by cellular death, tissue disruption, loss of homeostasis, pain limiting activities of daily living or short-term psychological harm (for cases of sexual violence), inflicted on the body as the direct or indirect result of a physical force, immersion or exposure, which may include interpersonal or self-inflicted forces. GBD, Global Burden of Disease; ICD, International Classification of Diseases.

of injury mortality estimation, this process is largely focused on (1) ensuring appropriate accounting for different ICD code versions used for cause of death data classification over time, (2) redistribution of ill-defined causes of death (described in more

detail elsewhere) and (3) processing VA studies into usable data that map to the GBD cause hierarchy.⁸⁹¹² The third general principle for injury cause of death models in GBD 2017 is to develop a diverse set of plausible models. This process is conducted via

Table 3 GBD nature of injury		
Nature of injury		
Amputation of lower limbs, bilateral	Fracture of sternum and/or fracture of one or more ribs	Crush injury
Amputation of upper limbs, bilateral	Fracture of vertebral column	Nerve injury
Amputation of fingers (excluding thumb)	Fracture of femur, other than femoral neck	Injury to eyes
Amputation of lower limb, unilateral	Minor TBI	Poisoning requiring urgent care
Amputation of upper limb, unilateral	Moderate/severe TBI	Severe chest injury
Amputation of thumb	Spinal cord lesion at neck level	Internal haemorrhage in abdomen and pelvis
Amputation of toe/toes	Spinal cord lesion below neck level	Effect of different environmental factors
Lower airway burns	Muscle and tendon injuries, including sprains and strains lesser dislocations	Complications following therapeutic procedures
Burns, <20% total burned surface area without lower airway burns	Foreign body in ear	Multiple fractures, dislocations, crashes, wound pains and strains
Burns, \geq 20% total burned surface area or \geq 10% burned surface area if head/neck or hands/wrist involved without lower airway burns	Open wound(s)	
Fracture of clavicle, scapula or humerus	Contusion in any part of the body	
Fracture of face bones	Superficial injury of any part of the body	
Fracture of foot bones except ankle	Dislocation of hip	
Fracture of hand (wrist and other distal part of hand)	Dislocation of knee	
Fracture of hip	Dislocation of shoulder	
Fracture of patella, tibia or fibula or ankle	Foreign body in respiratory system	
Fracture of pelvis	Foreign body in GI and urogenital system	
Fracture of radius and/or ulna	Drowning and non-fatal submersion	
Fracture of skull	Asphyxiation	

GBD, Global Burden of Disease; GI, gastrointestinal; TBI, traumatic brain injury.

the Cause of Death Ensemble model (CODEm) framework, which is the standard, peer-reviewed cause of death estimation process used extensively in the GBD study. CODEm generates a large set of possible models based on covariates suggested by the modeller based on expert input and literature review (eg, alcohol for road injuries) and then runs every plausible model, which can range into the thousands per cause. These models can be conducted in both rate space and cause fraction space and use an assortment of combinations among the user-selected covariates (table 4). Fourth, the predictive validity of each one of these submodels is tested using test-train holdouts, whereby a specific model is trained on a portion of data and tested on a separate portion to determine out-of-sample predictive validity. Once the submodels are conducted and predictive validity is measured, then an ensemble model is developed out of the submodels. The submodels and the ensemble model are then subject to the fifth principle, which is to choose the best-performing models based on out-of-sample predictive validity. The chosen models may be a single cause model or an ensemble of models. Beyond these processes, which have become automated with expert review in the GBD processing architecture, there is also considerable time required by the analysts, modellers, collaborators and principal investigators who are involved in the GBD study. Such processes also come under expert scrutiny via the GBD Scientific Council and the peer-review process in the annual GBD capstone publications.²⁻⁷

Once submodels and ensemble models have been conducted for each cause in the GBD cause hierarchy, a process to correct for cause of death rates to ensure internal consistency is conducted. Specifically, each subcause within some overall cause is rescaled such that, for example, every subtype of road injuries sums to road injuries deaths overall, and then road injuries and other transport injuries sum to equal the overall transport injuries cause. As this cascades to the overall cause hierarchy and the overall all-cause mortality rates, cause-specific mortality across all causes ultimately equals the overall mortality in the population. An example of an injuries cause of death model with

vital registration data (Colombia, females) is shown in figure 1. A similar model with relatively less data is shown in figure 2 (Honduras, females). While data are absent in more recent years in Honduras, the model is still able to follow temporal trends, age patterns and broader geographical patterns by harnessing signals from covariate-based fixed effects (eg, alcohol consumption per capita) and location-based random effects (eg, the regional trends in Central Latin America and patterns in neighbouring countries). All cause of death models from GBD 2017 are publicly available for review (https://vizhub.healthdata.org/cod/). Causespecific deaths are converted to cause-specific mortality rates (CSMRs) using GBD populations. Once CSMRs are established, years of life lost (YLLs) are computed as the product of CSMRs and residual life expectancy at the age of death. The residual life expectancy is based on the lowest observed mortality rate for each age across all populations over 5 million. For example, if a death from road injuries occurs at age 25 and the residual life expectancy is 60 years, then there are 60 YLLs attributed to that death. If the death had occurred at age 50 with a residual life expectancy of 38 years, then 38 YLLs would be attributed. Life tables used for GBD 2017 are provided in related publications.⁷

Injury incidence, prevalence and years lived with disability

After cause-specific models for each cause of injury in the GBD cause hierarchy are conducted, the non-fatal estimation process is conducted. An overview of this process is depicted in figure 3. In the first stage, we estimate the incidence of injuries warranting medical care using DisMod-MR 2.1 (abbreviated DisMod). DisMod is a meta-regression tool for epidemiological estimation that uses a compartmental model structure whereby a healthy population may become diseased or injured, at which point the individual either remains a prevalent case, goes into remission or dies. DisMod essentially fits differential equations to reconcile the transitions between these different compartments, so that the final posterior estimate for each epidemiological parameter can be explained in the context of the other parameters.

Cause	Global or data-rich model	Sex	Number of covariates used	Covariates used
Transport injuries	Global/Data rich	Male	10	Alcohol (litres per capita), Education (years per capita), Lag distributed income per capita (I\$), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Rainfall Quintile 5 (proportion), Vehicles–two+four wheels (per capita), Vehicles–two wheels fraction (proportion), Sociodemographic Index, Healthcare Access and Quality Index
Transport injuries	Global/Data rich	Female	10	Alcohol (litres per capita), Education (years per capita), Lag distributed income per capita (I\$), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Rainfall Quintile 5 (proportion), Vehicles–two+four wheels (per capita), Vehicles–two wheels fraction (proportion), Sociodemographic Index, Healthcare Access and Quality Index
Road injuries	Global/Data rich	Male	13	Alcohol (liters per capita), Education (years per capita), Lag distributed income per capita (I\$), Population 15 t 30 (proportion), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Vehicles-two+four wheels (per capita), Vehicles-two wheels (per capita), Vehicles - 4 wheels (per capita), Vehicles-two wheels fraction (proportion), Log-transformed summary exposure value (SEV) scalar: Roc Inj, Sociodemographic Index, Healthcare Access and Quality Index
Road injuries	Global/Data rich	Female	13	Alcohol (liters per capita), Education (years per capita), Lag distributed income per capita (I\$), Population 15 t 30 (proportion), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Vehicles–two+four wheels (per capita), Vehicles–two wheels (per capita), Vehicles - 4 wheels (per capita), Vehicles–two wheels fraction (proportion), Log-transformed SEV scalar: Road Inj, Sociodemographic Index, Healthcare access and quality index
Pedestrian road injuries	Global/Data rich	Male	11	Alcohol (liters per capita), Education (years per capita), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Rainfall Quintile 5 (proportion), Vehicles–two+four whe (per capita), Vehicles–two wheels fraction (proportion), Log-transformed SEV scalar: Pedest, Sociodemographi Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Pedestrian road injuries	Global/Data rich	Female	11	Alcohol (liters per capita), Education (years per capita), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Rainfall Quintile 5 (proportion), Vehicles–two+four whe (per capita), Vehicles–two wheels fraction (proportion), Log-transformed SEV scalar: Pedest, Sociodemographi Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Cyclist road injuries	Global/Data rich	Male	10	Alcohol (liters per capita), Education (years per capita), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Vehicles–two+four wheels (per capita), Vehicles - two wheels fraction (proportion), Log-transformed SEV scalar: Cyclist, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Cyclist road injuries	Global/Data rich	Female	10	Alcohol (liters per capita), Education (years per capita), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Vehicles - two+four wheels (per capita), Vehicles–two wheels fraction (proportion), Log-transformed SEV scalar: Cyclist, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Motorcyclist road injuries	Global/Data rich	Male	10	Alcohol (liters per capita), Education (years per capita), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Rainfall Quintile 5 (proportion), Vehicles–two wheels (pr capita), Log-transformed SEV scalar: Mot Cyc, Sociodemographic Index, Healthcare Access and Quality Index, distributed income per capita (I\$)
Motorcyclist road injuries	Global/Data rich	Female	10	Alcohol (liters per capita), Education (years per capita), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Rainfall Quintile 5 (proportion), Vehicles–two wheels (pr capita), Log-transformed SEV scalar: Mot Cyc, Sociodemographic Index, Healthcare Access and Quality Index, distributed income per capita (I\$)
Motor vehicle road injuries	Global/Data rich	Male	10	Alcohol (liters per capita), Education (years per capita), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Rainfall Quintile 5 (proportion), Vehicles–four wheels (p capita), Log-transformed SEV scalar: Mot Veh, Sociodemographic Index, Healthcare Access and Quality Index, distributed income per capita (I\$)
Motor vehicle road injuries	Global/Data rich	Female	10	Alcohol (liters per capita), Education (years per capita), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Rainfall Quintile 5 (proportion), Vehicles–four wheels (p capita), Log-transformed SEV scalar: Mot Veh, Sociodemographic Index, Healthcare Access and Quality Index, distributed income per capita (I\$)
Other road injuries	Global/Data rich	Male	8	Alcohol (liters per capita), Rainfall Quintile 5 (proportion), Vehicles–two+four wheels (per capita), Vehicles–tw wheels fraction (proportion), Log-transformed SEV scalar: Oth Road, Sociodemographic Index, Healthcare Acce and Quality Index, Lag distributed income per capita (I\$)
Other road injuries	Global/Data rich	Female	8	Alcohol (liters per capita), Rainfall Quintile 5 (proportion), Vehicles-two+four wheels (per capita), Vehicles-tw wheels fraction (proportion), Log-transformed SEV scalar: Oth Road, Sociodemographic Index, Healthcare Acce and Quality Index, Lag distributed income per capita (IS)
Other transport injuries	Global/Data rich	Male	11	Alcohol (liters per capita), Education (years per capita), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Rainfall Quintile 5 (proportion), Vehicles–two+four whe (per capita), Vehicles–two wheels fraction (proportion), Log-transformed SEV scalar: Oth Trans, Sociodemograp Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Other transport injuries	Global/Data rich	Female	11	Alcohol (liters per capita), Education (years per capita), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Rainfall Quintile 5 (proportion), Vehicles–two+four whe (per capita), Vehicles–two wheels fraction (proportion), Log-transformed SEV scalar: Oth Trans, Sociodemograp Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Falls	Global/Data rich	Male	7	Alcohol (liters per capita), Elevation Over 1500 m (proportion), Log-transformed SEV scalar: Falls, Sociodemographic Index, milk adjusted(g), Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Falls	Global/Data rich	Female	7	Alcohol (liters per capita), Elevation Over 1500 m (proportion), Log-transformed SEV scalar: Falls, Sociodemographic Index, milk adjusted(g), Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Drowning	Global/Data rich	Male	10	Alcohol (liters per capita), Coastal Population within 10 km (proportion), Education (years per capita), Landloc Nation (binary), Elevation Under 100 m (proportion), Rainfall Quintile 1 (proportion), Rainfall Quintile 5 (proportion), Log-transformed SEV scalar: Drown, Sociodemographic Index, Lag distributed income per capita
Drowning	Global/Data rich	Female	10	Alcohol (liters per capita), Coastal Population within 10 km (proportion), Education (years per capita), Landloc Nation (binary), Elevation Under 100 m (proportion), Rainfall Quintile 1 (proportion), Rainfall Quintile 5 (proportion), Log-transformed SEV scalar: Drown, Sociodemographic Index, Lag distributed income per capita

Fire, heat and hot	Global/Data rich	Male	9	Alcohol (liters per capita), Tobacco (cigarettes per capita), Education (years per capita), Indoor Air Pollution
ubstances	Giobal/Data fich	Male	5	(All Cooking Fuels), Population Density (over 1000 ppl/sqkm, proportion), Log-transformed SEV scalar: Fire, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
ire, heat and hot substances	Global/Data rich	Female	9	Alcohol (liters per capita), Tobacco (cigarettes per capita), Education (years per capita), Indoor Air Pollution (All Cooking Fuels), Population Density (over 1000 ppl/sqkm, proportion), Log-transformed SEV scalar: Fire, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Poisonings	Global/Data rich	Male	8	Education (years per capita), Opium Cultivation (binary), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Log-transformed SEV scalar: Poison, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Poisonings	Global/Data rich	Female	8	Education (years per capita), Opium Cultivation (binary), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Log-transformed SEV scalar: Poison, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Poisoning by carbon nonoxide	Global/Data rich	Male	4	Education (years per capita), Lag distributed income per capita (I\$), Sociodemographic Index, Healthcare Acces and Quality Index
Poisoning by carbon nonoxide	Global/Data rich	Female	4	Education (years per capita), Lag distributed income per capita (I\$), Sociodemographic Index, Healthcare acces and quality index
Poisoning by other neans	Global/Data rich	Male	4	Education (years per capita), Lag distributed income per capita (I\$), Sociodemographic Index, Healthcare acces and quality index
Poisoning by other neans	Global/Data rich	Female	4	Education (years per capita), Lag distributed income per capita (I\$), Sociodemographic Index, Healthcare acces and quality index
Exposure to nechanical forces	Global/Data rich	Male	7	Alcohol (liters per capita), Education (years per capita), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Sociodemographic Index, Healthcare access and quality index, Lag distributed income per capita (I\$)
Exposure to mechanical forces	Global/Data rich	Female	7	Alcohol (liters per capita), Education (years per capita), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Sociodemographic Index, Healthcare access and quality index, Lag distributed income per capita (I\$)
Unintentional firearm Injuries	Global/Data rich	Male	9	Alcohol (liters per capita), Education (years per capita), Health System Access (unitless), Population Density (ov 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Log-transformed SEV scalar Mech Gun, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (l
Unintentional firearm njuries	Global/Data rich	Female	9	Alcohol (liters per capita), Education (years per capita), Health System Access (unitless), Population Density (ov 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Log-transformed SEV scalar Mech Gun, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (
Other exposure to nechanical forces	Global/Data rich	Male	9	Alcohol (liters per capita), Education (years per capita), Health System Access (unitless), Population Density (ov 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Log-transformed SEV scalar Oth Mech, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I
Other exposure to nechanical forces	Global/Data rich	Female	9	Alcohol (liters per capita), Education (years per capita), Health System Access (unitless), Population Density (ov 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Log-transformed SEV scalar Oth Mech, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I
Adverse effects of nedical treatment	Global/Data rich	Male	3	Lag distributed income per capita (I\$), Sociodemographic Index, Healthcare Access and Quality Index
dverse effects of nedical treatment	Global/Data rich	Female	3	Lag distributed income per capita (I\$), Sociodemographic Index, Healthcare Access and Quality Index
Animal contact	Global/Data rich	Male	11	Alcohol (liters per capita), Education (years per capita), Elevation Over 1500 m (proportion), Population 15 to 30 (proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm proportion), Elevation Under 100 m (proportion), Log-transformed SEV scalar: Animal, Sociodemographic Inder Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Animal contact	Global/Data rich	Female	11	Alcohol (liters per capita), Education (years per capita), Elevation Over 1500 m (proportion), Population 15 to 30 (proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm proportion), Elevation Under 100 m (proportion), Log-transformed SEV scalar: Animal, Sociodemographic Indez Healthcare Access and Quality Index, Laq distributed income per capita (I\$)
/enomous animal contact	Global/Data rich	Male	10	Alcohol (liters per capita), Education (years per capita), Elevation Over 1500 m (proportion), Population Densit (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Elevation Under 100 r (proportion), Log-transformed SEV scalar: Venom, Sociodemographic Index, Healthcare Access and Quality Ind Lag distributed income per capita (I\$)
/enomous animal contact	Global/Data rich	Female	10	Alcohol (liters per capita), Education (years per capita), Elevation Over 1500 m (proportion), Population Densit (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Elevation Under 100 r (proportion), Log-transformed SEV scalar: Venom, Sociodemographic Index, Healthcare Access and Quality Ind Lag distributed income per capita (IS)
lon-venomous animal contact	Global	Male	6	Alcohol (liters per capita), Education (years per capita), Lag distributed income per capita (I\$), Log-transformed SEV scalar: Non Ven, Sociodemographic Index, Healthcare Access and Quality Index
Non-venomous animal contact	Data rich	Male	10	Alcohol (liters per capita), Education (years per capita), Elevation Over 1500 m (proportion), Population Densit (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Elevation Under 100 m (proportion), Log-transformed SEV scalar: Non Ven, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Non-venomous animal contact	Global/Data rich	Female	10	Alcohol (liters per capita), Education (years per capita), Elevation Over 1500 m (proportion), Population Densit (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Elevation Under 100 m (proportion), Log-transformed SEV scalar: Non Ven, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Foreign body	Global	Male	10	Education (years per capita), Indoor Air Pollution (All Cooking Fuels), Population Density (over 1000 ppl/sqkm, proportion), Population Over 65 (proportion), Sociodemographic Index, Healthcare Access and Quality Index, L distributed income per capita (I\$)
oreign body	Global	Female	10	Education (years per capita), Indoor Air Pollution (All Cooking Fuels), Population Density (over 1000 ppl/sqkm, proportion), Population Over 65 (proportion), Sociodemographic Index, Healthcare Access and Quality Index, L distributed income per capita (IS)

Continued

Table 4 Contin	nued			
Pulmonary aspiration and foreign body in airway	Global/Data rich	Male	6	Alcohol (liters per capita), Lag distributed income per capita (I\$), Mean BMI, Log-transformed SEV scalar: F Body Aspn, Sociodemographic Index, Access and Quality Index
Pulmonary aspiration and foreign body in airway	Global	Female	8	Alcohol (liters per capita), Education (years per capita), Mean BMI, Alcohol binge drinker proportion, age- standardised, Log-transformed SEV scalar: F Body Aspn, Sociodemographic Index, Healthcare access and quality index, Lag distributed income per capita (I\$)
Pulmonary aspiration and foreign body in airway	Data rich	Female	6	Alcohol (liters per capita), Lag distributed income per capita (I\$), Mean BMI, Log-transformed SEV scalar: F Body Aspn, Sociodemographic Index, Healthcare Access and Quality Index
Foreign body in other body part	Global/Data rich	Male	10	Alcohol (liters per capita), Education (years per capita), Elevation Over 1500 m (proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Elevation Under 100 m (proportion), Log-transformed SEV scalar: Oth F Body, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Foreign body in other body part	Global/Data rich	Female	10	Alcohol (liters per capita), Education (years per capita), Elevation Over 1500 m (proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Elevation Under 100 m (proportion), Log-transformed SEV scalar: Oth F Body, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Environmental heat and cold exposure	Global/Data rich	Male	11	Education (years per capita), Lag distributed income per capita (I\$), Population-weighted mean temperature, Elevation Over 1500 m (proportion), Elevation 500 to 1500 m (proportion), Population Density (150–300 ppl/sqkm, proportion), Rainfall (Quintiles 4–5), Sanitation (proportion with access), 90th percentile climatic temperature in the given country-year, Sociodemographic Index, Healthcare Access and Quality Index
Environmental heat and cold exposure	Global/Data rich	Female	11	Education (years per capita), Lag distributed income per capita (I\$), Population-weighted mean temperature, Elevation Over 1500 m (proportion), Elevation 500 to 1500 m (proportion), Population Density (150–300 ppl/sqkm, proportion), Rainfall (Quintiles 4–5), Sanitation (proportion with access), 90th percentile climatic temperature in the given country-year, Sociodemographic Index, Healthcare Access and Quality Index
Other unintentional injuries	Global/Data rich	Male	12	Alcohol (liters per capita), Education (years per capita), Elevation Over 1500 m (proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Elevation Under 100 m (proportion), Vehiclestwo wheels (per capita), Vehiclesfour wheels (per capita), Log-transformed SEV scalar: Oth Unint, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Other unintentional injuries	Global/Data rich	Female	12	Alcohol (liters per capita), Education (years per capita), Elevation Over 1500 m (proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Elevation Under 100 m (proportion), Vehicles–two wheels (per capita), Vehicles–four wheels (per capita), Log-transformed SEV scalar: Oth Unint, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Self-harm	Global	Male	11	Alcohol (liters per capita), Education (years per capita), Population Density (150–300 ppl/sqkm, proportion), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Sociodemographic Index, Healthcare Access and Quality Index, Muslim Religion (proportion of population), Lag distributed income per capita (I\$)
Self-harm	Global	Female	15	Alcohol (liters per capita), Education (years per capita), Population Density (150–300 ppl/sqkm, proportion), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Religion (binary,>50% Muslim), Log-transformed SEV scalar: Self Harm, Sociodemographic Index, Major depressive disorder, Risk of selfharm due to major depressive disorder, Healthcare Access and Quality Index, Non- partner lifetime prevalence of sexual violence (female-only), Lag distributed income per capita (IS)
Self-harm	Data rich	Male	11	Alcohol (liters per capita), Education (years per capita), Population Density (150–300 ppl/sqkm, proportion), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Religion (binary,>50% Muslim), Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (IS)
Self-harm	Data rich	Female	13	Alcohol (liters per capita), Education (years per capita), Population Density (150–300 ppl/sqkm, proportion), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Religion (binary,>50% Muslim), Log-transformed SEV scalar: Self Harm, Sociodemographic Index, Major depressive disorder, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Self-harm by firearm	Global/Data rich	Male	13	Alcohol (liters per capita), Education (years per capita), Population Density (150–300 ppl/sqkm, proportion), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Religion (binary,>50% Muslim), Log-transformed SEV scalar: Self Harm, Sociodemographic Index, Major depressive disorder, Healthcare Access and Quality Index. Lag distributed income per capita (IS)
Self-harm by firearm	Global/Data rich	Female	13	Alcohol (liters per capita), Education (years per capita), Population Density (150–300 ppl/sqkm, proportion), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Religion (binary,>50% Muslim), Log-transformed SEV scalar: Self Harm, Sociodemographic Index, Major depressive disorder, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Self-harm by other specified means	Global/Data rich	Male	13	Alcohol (liters per capita), Education (years per capita), Population Density (150–300 ppl/sqkm, proportion), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Religion (binary,>50% Muslim), Log-transformed SEV scalar: Self Harm, Sociodemographic Index, Major depressive disorder, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Self-harm by other specified means	Global/Data rich	Female	13	Alcohol (liters per capita), Education (years per capita), Population Density (150–300 ppl/sqkm, proportion), Population Density (300–500 ppl/sqkm, proportion), Population Density (500–1000 ppl/sqkm, proportion), Population Density (over 1000 ppl/sqkm, proportion), Population Density (under 150 ppl/sqkm, proportion), Religion (binary,>50% Muslim), Log-transformed SEV scalar: Self Harm, Sociodemographic Index, Major depressive disorder, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Interpersonal violence	Global/Data rich	Male	8	Alcohol (liters per capita), Education (years per capita), Opium Cultivation (binary), Population Density (over 1000 ppl/sqkm, proportion), Log-transformed SEV scalar: Violence, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)

Continued

Table 4 Contin	nued			
Interpersonal violence	Global/Data rich	Female	8	Alcohol (liters per capita), Education (years per capita), Opium Cultivation (binary), Population Density (over 1000 ppl/sqkm, proportion), Log-transformed SEV scalar: Violence, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Physical violence by firearm	Global/Data rich	Male	8	Alcohol (liters per capita), Education (years per capita), Opium Cultivation (binary), Population Density (over 1000 ppl/sqkm, proportion), Log-transformed SEV scalar: Viol Gun, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Physical violence by firearm	Global/Data rich	Female	8	Alcohol (liters per capita), Education (years per capita), Opium Cultivation (binary), Population Density (over 1000 ppl/sqkm, proportion), Log-transformed SEV scalar: Viol Gun, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Physical violence by sharp object	Global/Data rich	Male	8	Alcohol (liters per capita), Education (years per capita), Opium Cultivation (binary), Population Density (over 1000 ppl/sqkm, proportion), Log-transformed SEV scalar: Viol Knife, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Physical violence by sharp object	Global/Data rich	Female	8	Alcohol (liters per capita), Education (years per capita), Opium Cultivation (binary), Population Density (over 1000 ppl/sqkm, proportion), Log-transformed SEV scalar: Viol Knife, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Physical violence by other means	Global/Data rich	Male	8	Alcohol (liters per capita), Education (years per capita), Opium Cultivation (binary), Population Density (over 1000 ppl/sqkm, proportion), Log-transformed SEV scalar: Oth Viol, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Physical violence by other means	Global/Data rich	Female	8	Alcohol (liters per capita), Education (years per capita), Opium Cultivation (binary), Population Density (over 1000 ppl/sqkm, proportion), Log-transformed SEV scalar: Oth Viol, Sociodemographic Index, Healthcare Access and Quality Index, Lag distributed income per capita (I\$)
Executions and police conflict	Global/Data rich	Male	6	Alcohol (liters per capita), Education (years per capita), Lag distributed income per capita (1\$), Population Density (over 1000 ppl/sqkm, proportion), Sociodemographic Index, Healthcare Access and Quality Index
Executions and police conflict	Global/Data rich	Female	6	Alcohol (liters per capita), Education (years per capita), Lag distributed income per capita (1\$), Population Density (over 1000 ppl/sqkm, proportion), Sociodemographic Index, Healthcare Access and Quality Index

BMI, body mass index.

Similar to the principles described in CODEm, DisMod uses all available data, ranging from incidence data to cause-specific mortality rates from the corrected CODEm results, to produce estimates for every age, sex, year and location. For the purposes of injuries, we established our case definition for non-fatal injuries as injuries that require medical care. This is a necessary case definition as we do not want to consider minor stumbles and falls, for example, that led to no actual bodily harm as injuries for GBD, since they would not have any associated disability. These models are conducted only for injury *causes* as opposed to the nature of injuries references above. Each data input is designated based on type of data—specifically, inpatient data, outpatient

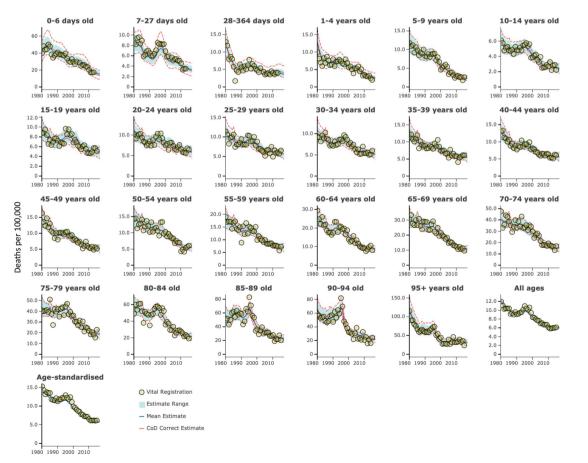


Figure 1 Cause of Death Ensemble model with data points for road injuries in Colombia for females.

Original research

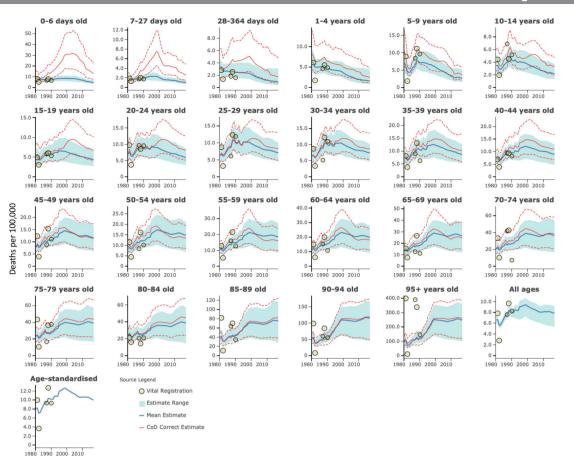


Figure 2 Cause of Death Ensemble model with data points for road injuries in Honduras for females

data, surveillance data, survey data and literature studies that are population-representative. We model incidence rates for hospital admissions for injuries, so the non-inpatient data sources get adjusted according to their classification so that the model inputs are consistent as injuries that warranted or received inpatient medical care. The coefficients measured by DisMod that were used for adjustment are provided in table 5. Input data for injury cause incidence models included sources identified as part of systematic reviews conducted in past GBD cycles, new sources identified by the GBD collaborator network and new sources of clinical data and other injuries data obtained by the core injuries burden estimation team at the Institute for Health Metrics and

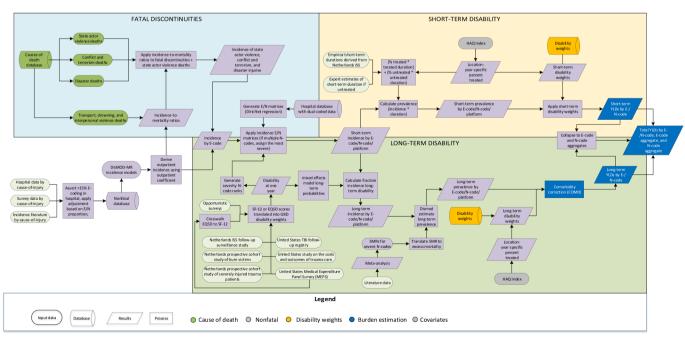


Figure 3 Injuries non-fatal estimation flow chart.

James SL, et al. Inj Prev 2020; 26:i125–i153. doi:10.1136/injuryprev-2019-043531

Table 5 Covariates and coefficients used in Global Burden of Disease incidence cause models

Cause	Outpatient coefficient	Injury receiving formal care, inpatient and outpatient coefficient	Injury warranting medical care coefficient
Animal contact	7.04 (7.03–7.04)	7.56 (6.91–8.31)	
Non-venomous animal contact	2.91 (2.91–2.92)	11.21 (10.1–12.38)	
Venomous animal contact	3.14 (3.01–3.34)	4.09 (3.69–4.5)	
Drowning	0.88 (0.87–0.89)	1.01 (1.0–1.05)	30.42 (15.33–51.11)
Falls	6.91 (6.89–6.94)	5.94 (5.5–6.46)	9.73 (9.28–10.22)
Fire, heat and hot substances	3.53 (3.53–3.56)	7.82 (7.24–8.51)	
Pulmonary aspiration and foreign body in airway	3.37 (3.35–3.43)	15.36 (13.93–16.86)	
Foreign body in eyes	931.4 (923.34–934.49)	302.06 (251.14–365.04)	
Foreign body in other body part	1.97 (1.95–2.01)	20.97 (15.55–26.26)	
Interpersonal violence	6.57 (6.56–6.61)	21.43 (13.6–32.79)	46.97 (39.57–53.62)
Assault by firearm	1.36 (1.29–1.44)	1.27 (1.05–1.6)	53.58 (50.65–54.54)
Assault by sharp object	3.18 (2.92–3.5)	2.38 (1.86–3.22)	37.91 (28.3–50.05)
Assault by other means	5.65 (5.44–5.89)	2.44 (2.02–3.2)	
Exposure to mechanical forces	12.4 (12.0–12.82)	33.3 (30.51–36.23)	
Unintentional firearm injuries	2.71 (2.53–2.9)	4.6 (3.49–6.36)	
Other exposure to mechanical forces	12.62 (12.55–12.85)	30.77 (25.74–36.09)	
Adverse effects of medical treatment	1.06 (1.06–1.06)	19.81 (17.29–26.1)	
Environmental heat and cold exposure	3.91 (3.9–3.94)		17.54 (3.91–49.6)
Other unintentional injuries	13.53 (13.46–13.78)		14.95 (9.62–24.12)
Poisonings	3.96 (3.73–4.19)	3.78 (3.4–4.21)	8.47 (4.41–16.64)
Poisoning by carbon monoxide	5.86 (5.68–5.92)		
Poisoning by other means	4.18 (3.9–4.5)		
Self-harm	2.75 (2.75–2.78)	2.5 (2.2–2.83)	
Self-harm by firearm	2.77 (2.42–3.07)	16.94 (2.81–51.06)	
Self-harm by other specified means	1.5 (1.47–1.51)	6.73 (2.78–19.14)	
Other transport injuries	1.65 (1.6–1.77)	1.01 (1.0–1.03)	
Road injuries	3.77 (3.75–3.78)	6.16 (5.65–6.68)	15.44 (13.25–18.1)
Motorcyclist road injuries	1.94 (1.92–1.99)		
Motor vehicle road injuries	4.48 (4.46–4.48)		
Other road injuries	6.9 (6.89–6.96)		
Cyclist road injuries	4.54 (4.33–4.89)		
Pedestrian road injuries	1.94 (1.94–1.96)	15.78 (7.63–36.6)	

Evaluation at the University of Washington. In addition, CSMRs from the corrected CODEm models described above are used in this stage of DisMod modelling. The list of non-fatal injury sources used in GBD 2017 is provided in online supplementary appendix table 2. The completed DisMod models for inpatient incidence for each cause of injury are publicly available at https:// vizhub.healthdata.org/epi/.

Once an incidence cause model is constructed for each cause of injury, an extensive analytical 'pipeline' follows which converts injury cause incidence into years lived with disability. First, inpatient incidence is split into inpatient and outpatient incidence using coefficients empirically measured by DisMod. The outpatient coefficients for each injury cause are also included in table 5. Separate pipelines are then conducted for inpatient and outpatient injury incidence-each step below can be considered to have been run for both streams of data, for each cause of injury. After the coefficient is applied, incidence is adjusted by the excess mortality rate measured by DisMod to essentially remove injury cases that died after the injury occurred. Once these deaths are removed from the incidence pool, the resulting steps are applied to these surviving cases of injury. First, each new case of injury is considered to have 47 possible 'natures' of injury that can result. These are the types of bodily injury that are considered to be possible outcomes from a given injury

cause. The proportion of new cases of injury that would have some nature of injury as the most disabling outcome is determined based on dual-coded clinical data sources where both the cause and nature of injury were included as ICD codes.¹⁰ Of note, one limitation of this process is that due to computational demands, it is currently only possible to apportion the most disabling nature of injury for each new case of injury. As such, the probability that each nature of injury is the most disabling nature of injury for some cause of injury is modelled in a Dirichlet regression such that the probabilities sum to 1. In other words, each nature of injury has some probability of being the most disabling injury suffered by the victim of some cause of injury, but if multiple natures of injury occurred, then the less disabling injuries are not captured as part of that injury cause's disability. This limitation has been recognised as a limitation of GBD injury burden estimation in various peer-reviewed articles and will likely be addressed in future GBD updates as computational efficiency improves.^{3 10}

The probability distributions of each cause-nature are computed separately for each age, sex, year and location. At this point, the analytical stage has the age-specific, sex-specific, yearspecific, location-specific incidence of a cause-nature combination, for example, the incidence of road injuries that led to a cervical-level spinal cord injury in males aged 20–24 years in 2017 in Stockholm, Sweden. The next step converts these incidence estimates into short-term and long-term injury incidence estimates, where long-term disability is defined as having a lower functional status 1 year postinjury than at the time of injury. These probabilities were measured using long-term follow-up studies.^{14–20} For some natures of injury, such as lower extremity amputation, the probability of being a long-term injury is 1. The probabilities of short-term versus long-term injury for each cause-nature combination are used to split the incidence values into short-term and long-term pipelines. The long-term incidence is then converted to prevalence using the ordinary differential equation solver used in DisMod, which also uses as an input excess mortality estimated for certain natures of injury such as traumatic brain injury and spinal cord injury conducted in a previous systematic review and meta-analysis. The shortterm incidence is converted to prevalence by multiplying incidence and duration of injury, where duration of injury was either computed directly from follow-up studies or, in the case of unavailable data, estimated by an expert clinical panel involved in previous iterations of the GBD study. Since access to medical treatment is assumed to affect duration of injury and disability. the GBD Healthcare Access and Quality Index is used to estimate the proportion with and without access to medical treatment on a location-specific basis.²¹ The average duration for short-term injury is therefore calculated as the percentage treated multiplied by treated duration added to the percentage untreated multiplied by the untreated duration. The output from this step is the shortterm prevalence of each cause-nature combination. Short-term prevalence is subtracted from long-term prevalence at this stage to avoid double counting the same case of injury. Once shortterm and long-term prevalence estimates for each cause-nature are computed, then disability weights as derived by the Salomon et al process are assigned to each injury nature.²² Short-term disability weights by injury nature are shown in table 6, which does not include amputations since we assume they cause only long-term disability. The full list of long-term disability weights by injury nature, location and year are provided in online supplementary appendix table 3, which does not include foreign body in respiratory system, foreign body in gastrointestinal and urogenital system, foreign body in ear and superficial injury of any part of body, since we assume these natures of injury do not cause long-term disability. After disability weights are assigned to each injury case, years lived with disability for each cause of injury are calculated as the prevalence of each health state multiplied by the corresponding disability weight and then summed across natures of injury for each cause to compute years lived with disability (YLDs) for each age, sex, year and location for that injury cause. YLDs then undergo comorbidity adjustment used across the GBD study whereby comorbid cases of disease and injury in the population are simulated and adjusted disability weights are computed. These processes are described in more detail in GBD literature.³ GBD 2017 provided an important methodological update whereby nature of injury results, regardless of cause of injury, could be reviewed in the results from this process; this has enabled more advanced GBD research such as measuring the burden of traumatic brain injury and spinal cord injury, measuring the burden of facial fractures and measuring the burden of hand and finger fractures.¹⁰

Sexual violence

Sexual violence follows a different analytical pathway than the other causes of injury. This process is shown in figure 4. We used the same study framework as was developed for other injury

Table 6 Short-term disability weights for each nature of injury

Table o Short-term disability weights for each	nature of injury
Nature of injury	Short-term disability weight
Spinal cord lesion at neck level	0.7319
Spinal cord lesion below neck level	0.6235
Foreign body in respiratory system	0.4079
Lower airway burns	0.3764
Severe chest Injury	0.3685
Internal haemorrhage in abdomen and pelvis	0.3242
Burns, \geq 20% total burned surface area or \geq 10% burned surface area if head/neck or hands/wrist involved without lower airway burns	0.3145
Fracture of pelvis	0.2788
Fracture of hip	0.2575
Multiple fractures, dislocations, crashes, wounds, sprains and strains	0.2575
Drowning and non-fatal submersion	0.2471
Asphyxiation	0.2471
Moderate TBI	0.2137
Poisoning requiring urgent care	0.1628
Burns, <20% total burned surface area without lower airway burns	0.1408
Effect of different environmental factors	0.1334
Complications following therapeutic procedures	0.1334
Crush injury	0.1325
Foreign body in GI and urogenital system	0.1143
Dislocation of knee	0.1134
Fracture of femur, other than femoral neck	0.1114
Fracture of vertebral column	0.1106
Minor TBI	0.11
Fracture of sternum and/or fracture of one or more ribs	0.1027
Nerve injury	0.0997
Fracture of skull	0.0714
Fracture of face bones	0.0669
Dislocation of shoulder	0.062
Injury to eyes	0.0543
Fracture of patella, tibia or fibula or ankle	0.0501
Fracture of clavicle, scapula or humerus	0.0349
Fracture of radius and/or ulna	0.0281
Fracture of foot bones except ankle	0.026
Dislocation of hip	0.0159
Foreign body in ear	0.0133
Fracture of hand (wrist and other distal part of hand)	0.0099
Muscle and tendon injuries, including sprains and strains lesser dislocations	0.0075
Contusion in any part of the body	0.0075
Superficial injury of any part of the body	0.0075
Open wound(s)	0.0058

GI, gastrointestinal; TBI, traumatic brain injury.

rates in the GBD 2017 study to estimate the yearly proportion of the population that experienced at least one episode of sexual violence in the past year, using a case definition of any sexual assault including penetrative sexual violence (rape) and non-penetrative sexual violence (other forms of unwanted sexual touching). To inform the sexual violence estimates, we identified data in 93 countries that met the case definition above. This resulted in 263 site-years of data, which mainly were derived from surveys such as Demographic and Health Surveys and Reproductive Health Surveys. Similar to our other injury models, we used DisMod 2.1 to model prevalence. The

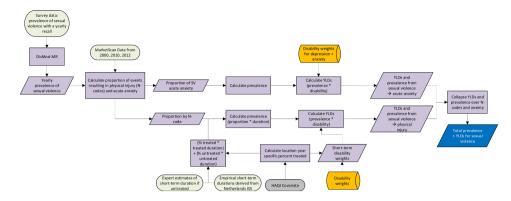


Figure 4 Sexual violence estimation flow chart. HAQI, Healthcare Access and Quality Index.

sexual violence prevalence model used study-level covariates for each type of survey question, for example, we used a studylevel covariate to identify surveys that identify penetrative sexual violence only to account for how the overall incidence of sexual violence is greater than this value. This model also used a covariate on alcohol use in litres per capita for each location to help fit the model in data-sparse locations. Once yearly prevalence was measured, sexual violence cases undergo a process by which short-term disability from the physical and psychological harm of sexual violence cases is assigned to each prevalent case; however, long-term sequelae of sexual violence are currently not captured in this process, which has been a known limitation of sexual violence estimation in the GBD framework.

Disability-adjusted life-years

After estimation of cause-specific mortality and YLLs as well as non-fatal health outcomes estimation including YLDs, DALYs are calculated as the sum of YLLs and YLDs for each cause of injury. YLDs are also calculated for each nature of injury category.

GATHER statement

GBD 2017 adheres to the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). GATHER is described in more detail in online supplementary appendix 2.

RESULTS

Results for all GBD 2017 injury estimates are available in associated publications as well as online. Specifically, results by age, sex, year, subnational location and nature of injury can be viewed and downloaded online via the GBD Results Tool (http://ghdx.healthdata.org/gbd-results-tool) and GBD Compare (https://vizhub. healthdata.org/gbd-compare/). These results are available in terms of incidence, prevalence, YLDs, cause-specific mortality, YLLs and DALYs, expressed in counts, rates, and percentages. Analytical code and input datasets are available at http://ghdx.healthdata.org.

CODEm models

Model performance metrics for each injury cause model in GBD 2017 are provided in table 7. Model performance metrics for CODEm models include root mean square error (RMSE) for in-sample tests and out-of-sample tests, percentage of data points that correctly predict the trend in-sample and out-of-sample and percentage of data points that are present within the 95% uncertainty intervals (UIs) of the model fit. RMSE in-sample is generally better than RMSE out-of-sample, which is an expected result that also demonstrates the importance of performing out-of-sample predictive validity tests. While the correct trend is predicted in approximately one in five models, this may also

be related to more dynamic temporal trends in injury mortality patterns over time. In general, most data points exist within the 95% UI of the model fit (mean: 98.5% in-sample, 98.0% out-of-sample).

Incidence models

Model performance metrics for each injury cause model in GBD 2017 are provided in table 8. These model performance metrics include in-sample coverage and RMSE of estimated results for cause-specific mortality, excess mortality and incidence. There are no performance metrics for CSMR or excess mortality for foreign body in eyes since we do not estimate mortality from this cause of injury. For incidence, the in-sample coverage average was 55.3% across cause-of-injury models and ranged from a low of 26% in falls to a high of 88% in poisoning by carbon monoxide. Incidence RMSE ranged from a low of 1.04 in pedestrian road injuries to a high of 4.86 in foreign body in eye.

DISCUSSION

Many considerable advancements have been made in the measurement of global injury burden since early versions of the GBD Study. Novel datasets, sophisticated statistical modelling and global collaboration have all facilitated the advancement of injury burden measurement science. Many more advancements in future updates should be possible as larger datasets become available and as computational power allows for more detailed measurement processes. Continued global collaboration will be an integral component. Suggested priority items for the advancement of injury burden estimation are as follows:

First, while much of the global injury burden occurs in lowincome and middle-income countries, these countries are frequently the most data-sparse. GBD has rigorously attempted to collect all available data, including police records and verbal autopsy studies and inpatient and outpatient records; however, it is likely that additional data sources in data-sparse countries exist. Parties who are aware of additional data sources that could be used in the GBD estimation framework should consider joining the GBD collaborator network to contribute new sources of data to be used in future estimation updates.

Second, computational and data limitations make it difficult to account for the full disability that might be experienced in the setting of multiple injuries. For example, if an individual sustains a below-neck spinal injury and an upper extremity amputation, the amputation is not directly accounted for in the prevalence or YLD estimate of the injury cause to which this disability is attributed. This problem quickly grows in complexity, as one can imagine an event like a road injury leading to multiple contusions and abrasions,

Table 7 Performance metrics for each cause-of-injury CODEm model

Cause	Туре	Sex	RMSE in-sample	RMSE out-of-sample	Per cent coverage in-sample	Per cent coverage out-of-sample
Transport injuries	Data rich	Female	0.153062	0.211028	0.999851	0.999395
Transport injuries	Data rich	Male	0.144423	0.202366	0.99978	0.998995
Transport injuries	Global	Female	0.216405	0.338398	0.99951	0.992996
Transport injuries	Global	Male	0.209561	0.327954	0.999347	0.99108
Road injuries	Data rich	Female	0.154916	0.22011	0.999945	0.999642
Road injuries	Data rich	Male	0.147432	0.208989	0.99987	0.999452
Road injuries	Global	Female	0.198002	0.338885	0.999736	0.993674
Road injuries	Global	Male	0.193896	0.321219	0.999332	0.990834
Pedestrian road injuries	Data rich	Female	0.183693	0.327964	0.999776	0.998965
Pedestrian road injuries	Data rich	Male	0.177994	0.323544	0.999688	0.998913
Pedestrian road injuries	Global	Female	0.240151	0.430127	0.999174	0.992328
Pedestrian road injuries	Global	Male	0.247329	0.409191	0.998229	0.990017
Cyclist road injuries	Data rich	Female	0.219965	0.435983	0.999892	0.999106
Cyclist road injuries	Data rich	Male	0.206919	0.500591	0.999876	0.999158
Cyclist road injuries	Global	Female	0.296895	0.528063	0.998384	0.990875
Cyclist road injuries	Global	Male	0.294776	0.527441	0.998702	0.988234
, ,						
Motorcyclist road njuries	Data rich	Female	0.268406	0.653692	0.999776	0.998805
Motorcyclist road njuries	Data rich	Male	0.195368	0.444714	0.999793	0.998395
Motorcyclist road injuries	Global	Female	0.362655	0.692762	0.998726	0.99082
Motorcyclist road njuries	Global	Male	0.283024	0.502588	0.998804	0.987794
Motor vehicle road njuries	Data rich	Female	0.167766	0.33083	0.99993	0.999335
Motor vehicle road njuries	Data rich	Male	0.160584	0.309726	0.999919	0.999377
Motor vehicle road	Global	Female	0.230946	0.38664	0.99957	0.995355
Motor vehicle road	Global	Male	0.232898	0.378096	0.999353	0.992869
Other road injuries	Data rich	Female	0.408852	1.04171	0.997205	0.970506
Other road injuries	Data rich	Male	0.467256	1.21047	0.994429	0.9463
Other road injuries	Global	Female	0.558784	0.899497	0.994899	0.96375
Other road injuries	Global	Male	0.654189	1.0708	0.984753	0.931697
Other transport injuries	Data rich	Female	0.255843	0.406371	0.999581	0.998655
			0.195575	0.404214		
Other transport injuries	Data rich	Male		0.404214	0.999666	0.99863
Other transport injuries	Global	Female	0.31846		0.998599	0.991384
Other transport injuries	Global Data rich	Male	0.267514	0.49731	0.998444	0.989304
Falls	Data rich	Female	0.162773	0.237492	0.999873	0.999522
Falls	Data rich	Male	0.157114	0.220452	0.999847	0.999492
Falls	Global	Female	0.246877	0.428822	0.99923	0.988577
alls	Global	Male	0.246101	0.369118	0.999571	0.989585
Drowning	Data rich	Female	0.177905	0.258172	0.999932	0.999782
Drowning	Data rich	Male	0.164617	0.226899	0.999868	0.999373
Drowning	Global	Female	0.238598	0.428467	0.999657	0.992777
Drowning	Global	Male	0.224438	0.361879	0.99961	0.989534
Fire, heat and hot Substances	Data rich	Female	0.175426	0.245	0.999962	0.999793
Fire, heat and hot substances	Data rich	Male	0.17054	0.227618	0.999944	0.999737
Fire, heat and hot Substances	Global	Female	0.281428	0.401798	0.999483	0.994548
Fire, heat and hot substances	Global	Male	0.289708	0.40982	0.999518	0.99422
	Data rich	Female	0.190498	0.283924	0.999901	0.999732
Poisonings						
Poisonings	Data rich	Male	0.189747	0.283639	0.999888	0.999668

Table 7 Continued Per cent coverage Per cent coverage RMSE out-of-sample Cause Type Sex RMSE in-sample in-sample out-of-sample Poisonings Global Female 0.311328 0.515718 0.99918 0.993385 Poisonings Global Male 0.323815 0.529806 0.999166 0.992089 Poisoning by carbon Data rich Female 0.255034 0.352342 0.999119 0.998139 monoxide 0.234913 0.998765 Poisoning by carbon Data rich Male 0.328692 0.999486 monoxide Poisoning by carbon Global Female 0.353393 0.688269 0.998372 0.982832 monoxide Poisoning by carbon Global Male 0.305615 0.621778 0.999006 0.983458 monoxide Female 0.208468 0.470199 0.999861 0.998144 Poisoning by other Data rich means Male 0.231395 0.543185 0.999871 0.998948 Poisoning by other Data rich means Global Female 0.284383 0.555132 0.999746 0.989287 Poisoning by other means Male 0.288098 0.590913 0.999759 0.990146 Poisoning by other Global means Data rich Female 0.171902 0.29354 0.999636 0.99932 Exposure to mechanical forces Male 0.162641 0.259268 0.999605 0.998955 Exposure to mechanical Data rich forces Exposure to mechanical Global Female 0.398855 0.54379 0.995672 0.987855 forces Exposure to mechanical Global Male 0.325975 0.454021 0.995758 0.985214 forces Unintentional firearm Data rich Female 0.207177 0.502831 0.999619 0.999488 injuries Unintentional firearm Data rich Male 0.221533 0.49235 0.999306 0.998449 injuries Unintentional firearm Global Female 0.354152 0.591674 0.998979 0.991558 injuries Unintentional firearm Global Male 0.355798 0.64953 0.996524 0.980841 injuries Other exposure to Data rich Female 0.20287 0.436518 0.999912 0.999795 mechanical forces Other exposure to Data rich Male 0.170292 0.318704 0.999896 0.999761 mechanical forces Other exposure to Global Female 0.406425 0.538089 0.995379 0.98994 mechanical forces Other exposure to Global Male 0.361646 0.472713 0.995528 0.988955 mechanical forces 0.186809 0.305147 0.999832 0.999511 Adverse effects of Data rich Female medical treatment Adverse effects of Data rich Male 0.217278 0.342415 0.999833 0.999577 medical treatment Adverse effects of Global Female 0.280204 0.430453 0.999698 0.993818 medical treatment Adverse effects of Global Male 0.277028 0.431272 0.999573 0.992957 medical treatment 0.277226 0.439671 0.999355 0.998642 Animal contact Data rich Female Animal contact Data rich Male 0.231627 0.414921 0.999863 0.999528 Global 0.401714 0.691306 0.998669 0.987713 Animal contact Female Animal contact Global Male 0.316647 0.623446 0.9991 0.99176 Data rich Female 0.417726 0.745234 0.960501 0.956152 Venomous animal contact Data rich Male 0.401006 0.761481 0.977149 0.97478 Venomous animal contact Global Female 0.634642 0.915323 0.965066 0.949503 Venomous animal contact

Table 7 Continued

Cause	Туре	Sex	RMSE in-sample	RMSE out-of-sample	Per cent coverage in-sample	Per cent coverage out-of-sample
Venomous animal	Global	Male	0.449848	0.839185	0.97819	0.96024
lon-venomous animal contact	Data rich	Female	0.304776	0.593881	0.994547	0.991865
Non-venomous animal contact	Data rich	Male	0.304223	0.529077	0.998929	0.998113
Non-venomous animal contact	Global	Female	0.421204	0.680417	0.995082	0.9848
Non-venomous animal contact	Global	Male	0.471148	0.740524	0.998707	0.990622
Foreign body	Data rich	Female	0.170699	0.275966	0.999937	0.999705
oreign body	Data rich	Male	0.166161	0.263143	0.999798	0.999305
Foreign body	Global	Female	0.216832	0.401408	0.999535	0.992467
oreign body	Global	Male	0.227414	0.381598	0.999262	0.989838
Pulmonary aspiration and foreign body in airway	Data rich	Female	0.174424	0.374749	0.999979	0.999572
Pulmonary aspiration and foreign body in airway	Data rich	Male	0.178947	0.34741	0.999928	0.999294
Pulmonary aspiration and foreign body in airway	Global	Female	0.267697	0.416038	0.999413	0.993624
Pulmonary aspiration and foreign body in airway	Global	Male	0.286472	0.422915	0.998089	0.990215
oreign body in other ody part	Data rich	Female	0.31229	0.664465	0.99005	0.987846
Foreign body in other body part	Data rich	Male	0.291172	0.629172	0.993547	0.991666
Foreign body in other body part	Global	Female	0.462299	0.749894	0.98392	0.971743
oreign body in other oody part	Global	Male	0.478614	0.759133	0.984301	0.971436
Other unintentional njuries	Data rich	Female	0.266367	0.450437	0.999612	0.999067
Other unintentional njuries	Data rich	Male	0.228051	0.387409	0.999597	0.998959
Other unintentional njuries	Global	Female	0.354782	0.671813	0.997343	0.984969
Other unintentional njuries	Global	Male	0.301256	0.54085	0.997963	0.985982
ielf-harm	Data rich	Female	0.157456	0.236415	0.999699	0.999206
elf-harm	Data rich	Male	0.150967	0.223371	0.999688	0.999011
elf-harm	Global	Female	0.219988	0.370761	0.998551	0.986222
elf-harm	Global	Male	0.203341	0.347213	0.999389	0.979274
elf-harm by firearm	Data rich	Female	0.215778	0.439608	0.992476	0.992525
elf-harm by firearm	Data rich	Male	0.19323	0.402898	0.998082	0.997457
elf-harm by firearm	Global	Female	0.311061	0.642889	0.987894	0.971118
elf-harm by firearm	Global	Male	0.316945	0.590367	0.992646	0.977377
elf-harm by other pecified means	Data rich	Female	0.162023	0.345661	0.999855	0.998854
elf-harm by other pecified means	Data rich	Male	0.235129	0.322581	0.999898	0.999453
elf-harm by other pecified means	Global	Female	0.191636	0.38357	0.999636	0.98601
elf-harm by other pecified means	Global	Male	0.192311	0.348953	0.999813	0.986603
	Deterstal.	Female	0.224081	0.294307	0.99863	0.996721
nterpersonal violence	Data rich	Terriale	0.224001	0.234307	0.55005	0.550721

Inj Prev: first published as 10.1136/injuryprev-2019-043531 on 24 August 2020. Downloaded from http://injuryprevention.bmj.com/ on February 3, 2021 at UCL Library Services. Protected by copyright.

Continued

Table 7

Cause	Туре	Sex	RMSE in-sample	RMSE out-of-sample	Per cent coverage in-sample	Per cent coverage out-of-sample
			•	· · ·	•	· ·
Interpersonal violence	Global	Female	0.306086	0.450697	0.998456	0.989396
Interpersonal violence	Global	Male	0.307439	0.479452	0.997588	0.981596
Physical violence by firearm	Data rich	Female	0.253283	0.414003	0.998598	0.997318
Physical violence by firearm	Data rich	Male	0.277353	0.501753	0.997843	0.996142
Physical violence by firearm	Global	Female	0.44617	0.621002	0.993619	0.98712
Physical violence by firearm	Global	Male	0.41286	0.679294	0.995867	0.981991
Physical violence by sharp object	Data rich	Female	0.222036	0.393235	0.999815	0.999003
Physical violence by sharp object	Data rich	Male	0.235542	0.463121	0.999796	0.998721
Physical violence by sharp object	Global	Female	0.276474	0.499795	0.999526	0.993622
Physical violence by sharp object	Global	Male	0.332336	0.595217	0.999354	0.990212
Physical violence by other means	Data rich	Female	0.204351	0.336239	0.999954	0.999532
Physical violence by other means	Data rich	Male	0.202192	0.394188	0.999868	0.999051
Physical violence by other means	Global	Female	0.270287	0.410186	0.999719	0.995718
Physical violence by other means	Global	Male	0.285589	0.45387	0.999612	0.992595
Environmental heat and cold exposure	Data rich	Female	0.234754	0.399463	0.999403	0.999073
Environmental heat and cold exposure	Data rich	Male	0.201821	0.309939	0.999658	0.999207
Environmental heat and cold exposure	Global	Female	0.3511	0.639869	0.998595	0.989061
Environmental heat and cold exposure	Global	Male	0.33441	0.528137	0.999336	0.993068
Executions and police conflict	Data rich	Female	0.852242	1.4431	0.49803	0.533053
Executions and police conflict	Data rich	Male	0.970597	1.55607	0.629313	0.628953
Executions and police conflict	Global	Female	1.2422	1.86518	0.541687	0.549016
Executions and police conflict	Global	Male	1.04755	1.95756	0.671496	0.659889

CODEm, Cause of Death Ensemble model.

several fractures in different anatomical sites, a mild traumatic brain injury and a spinal cord injury. There are over 3.6 million permutations of injury if one considers only 10 possible natures of injury, making it difficult to quantitatively measure these relationships by cause of injury and by age, sex, year and location. Future research to address this limitation may focus on simulation studies that model the probability of different comorbid injury combinations to better inform disability weight applications.

Third, more data could be used for nature of injury measurement. Traumatic brain injury and spinal cord injury registries, for example, are not currently directly compatible with the GBD injury estimation framework yet provide rich epidemiological information. Future updates to GBD should focus more attention on incorporating data that measure burden of nature of injury in terms of incidence, prevalence or excess mortality. Incorporating these types of data would require a method to be developed such that estimates were internally consistent across cause-nature distributions. While the methods and data required for this update would be complex, they would represent a large increase in the available data that could be used for GBD injuries estimation.

Fourth, measuring the total burden of sexual violence has proven to be a challenging area of estimation in the GBD framework. As noted in the 'Methods' section of this paper, one known limitation is how long-term sequelae and conditions may not be adequately accounted for in sexual violence burden estimation. In order to attribute burden from major depressive disorder, anxiety disorders, self-harm and substance use disorders, measuring the relative risk of developing these conditions for victims of sexual violence would allow for population attributable fractions to be calculated and DALYs from these conditions to be attributed to sexual violence. While the premise of this methodological update is relatively simple, currently there are relatively few studies to inform these relative risks, and conducting and adding such studies in the future would be recognised as a major achievement in GBD research as it would

Table 8 Performance metrics for each cause-of-injury DisMod model

	Cause-specific mortality rate:	Cause-specific mortality	Excess mortality rate:	Excess mortality rate:	Incidence hazard: in-	Incidence hazard:
Cause	in-sample coverage	rate: in-sample RMSE	in-sample coverage	in-sample RMSE	sample coverage	in-sample RMSE
Animal contact	0.95	0.96	0.69	1.14	0.40	1.64
Non-venomous animal contact	0.97	0.98	0.74	1.20	0.53	1.40
Venomous animal contact	0.97	1.13	0.74	1.17	0.48	1.31
Drowning	0.91	0.82	0.84	1.40	0.73	1.61
Falls	0.93	0.66	0.71	1.13	0.26	1.77
Fire, heat and hot substances	0.95	0.59	0.67	0.97	0.50	1.16
Pulmonary aspiration and foreign body in airway	0.92	0.93	0.78	1.29	0.65	1.56
Foreign body in eyes					0.83	4.86
Foreign body in other body part	0.96	1.40	0.74	1.31	0.57	1.39
Interpersonal violence	0.89	0.81	0.64	1.11	0.31	1.77
Assault by firearm	0.93	1.96	0.74	1.07	0.69	1.25
Assault by sharp object	0.92	1.50	0.78	1.05	0.57	1.17
Assault by other means	0.90	0.91	0.75	1.10	0.48	1.33
Exposure to mechanical forces	0.92	0.81	0.61	1.23	0.38	2.01
Unintentional firearm injuries	0.95	1.51	0.75	1.13	0.70	1.17
Other exposure to mechanical forces	0.93	0.84	0.66	1.22	0.41	1.94
Adverse effects of medical treatment	0.92	0.71	0.71	1.48	0.37	1.41
Environmental heat and cold exposure	0.94	1.21	0.73	1.54	0.56	1.52
Other unintentional injuries	0.89	1.31	0.51	1.35	0.50	1.67
Poisonings	0.95	0.90	0.76	1.75	0.58	1.90
Poisoning by carbon monoxide	0.95	0.94	0.81	1.11	0.88	1.17
Poisoning by other means	0.95	0.92	0.79	1.89	0.67	2.04
Self-harm	0.98	0.27	0.76	1.02	0.47	1.32
Self-harm by firearm	1.00	1.28	0.89	1.31	0.86	1.35
Self-harm by other specified means	0.98	0.26	0.83	0.96	0.60	1.06
Other transport injuries	0.96	0.99	0.73	1.43	0.63	1.32
Road injuries	0.91	0.47	0.63	1.10	0.27	1.43
Motorcyclist road injuries	0.96	1.07	0.70	1.13	0.54	1.18
Motor vehicle road injuries	0.94	0.55	0.59	1.12	0.48	1.21
Other road injuries	0.99	1.45	0.78	1.16	0.74	1.19
Cyclist road injuries	0.99	1.13	0.73	1.10	0.59	1.09
Pedestrian road injuries	0.92	0.72	0.62	1.02	0.48	1.04

RMSE, root mean square error .

allow for more accurate estimation of lifetime disability caused by sexual violence. This effort would moreover represent an important contribution to research surrounding the Sustainable Development Goals related to sexual violence and women's rights. ^{23 24}

Fifth, non-fatal injuries from conflict and natural disaster are challenging to estimate because of data sparsity in areas that are afflicted by these events. Fatalities are estimated after such events, but there is still considerable injury burden among the population that survives. Since data collection systems and hospitals may also be destroyed in these events, it becomes difficult to collect adequate non-fatal injury data. Global collaboration should also focus on identifying sources of data on non-fatal and fatal injury cases in conflict and natural disaster events.

It will be important to monitor the effects of implementing these priorities as injury measurement science continues to evolve. Global collaborations including the GBD enterprise should monitor performance statistics and utilisation of results by research groups and ministries to track how improvements to injury measurement progress over time. Scientific dialogue and collaboration must be a major focus, and the GBD enterprise is a good forum to support this kind of data sharing. For example, a collaborative effort between researchers in Vietnam and the Institute for Health Metrics on Evaluation on developing a study on Vietnam injury burden following GBD 2017 led to identifying the use of the Vietnam National Injury Survey, which was then added for estimation in GBD 2019. Increasing data collection standardisation efforts should be emphasised as a priority in all countries, particularly countries where data coverage on injuries is sparse. Ongoing dialogue via scientific publications and international conferences should also continue to serve as a forum to discuss data and methodological updates that can continue to refine the science of injuries estimation in GBD.

CONCLUSION

Measuring injuries burden in GBD is a complex scientific endeavour that leverages large amounts of data, a complex analytical framework and a global research network. GBD 2017 included more comprehensive detail of injury burden than any other known efforts to date. GBD 2019 and future updates will continue to add detail and refine methods in the interest of providing injury burden estimates that are robust, accurate and timely. Expanded injury data collection efforts will be a critical component of future injury burden estimation.

What is already known on the subject

- ► Global Burden of Disease (GBD) 2017 provided an extensive peer-reviewed assessment of death and disability.
- GBD 2017 methods have been reviewed and updated iteratively as new methods and data become available.
- Measuring injury burden in GBD 2017 is complex due to differences in measuring cause of injury versus nature of injury and the temporal difference between them.

What this study adds

- This capstone study details key estimation methods that are used for measuring the global burden of injuries as described in related publications in this journal.
- More detailed methods descriptions and model performance metrics from GBD 2017 are provided in this study than in related studies.
- This study also includes suggested future directions for improving injury burden research.

Author affiliations

¹Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA

²Department of Neurology, Cairo University, Cairo, Egypt

³Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ⁴Department of Public Health, Ministry of Health, Riyadh, Saudi Arabia

⁵Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, USA

⁶Biostatistics and Health Informatics, Madda Walabu University, Bale Robe, Ethiopia ⁷Radiotherapy Center, Addis Ababa University, Addis Ababa, Ethiopia

⁸Department of Public Health, Debre Berhan University, Debre Berhan, Ethiopia

⁹Cardiovascular Medicine Department, Ain Shams University, Abbasia, Egypt

¹⁰Department of Medicine, University College Hospital, Ibadan, Nigeria

¹¹Sport Science Department, University of Extremadura, Badajoz, Spain ¹²Social Behavioral Research Branch, National Institute of Health, Bethesda, MD, USA

¹³Cancer Prevention and Control, Georgetown University, Washington, DC, USA ¹⁴School of Medicine, Center for Politics, Population and Health Research, National

Autonomous University of Mexico, Mexico City, Mexico

¹⁵Department of Epidemiology and Health Statistics, Southeast University Nanjing, Nanjing, China

¹⁶Microbiology Department, Hazara University, Mansehra, Pakistan

¹⁷Department of Epidemiology, Jimma University, Jimma, Ethiopia

¹⁸James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh

¹⁹Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh

²⁰Higher National School of Veterinary Medicine, Algiers, Algeria

²¹Evidence Based Practice Center, Mayo Clinic Foundation for Medical Education and Research, Rochester, MN, USA

²²Department of Computer Sciences, Imam Abdulrehman Bin Faisal University, Dammam, Saudi Arabia ²³Department of Pharmacy, Adigrat University, Adigrat, Ethiopia

²⁴Medicine and Health Science, Arba Minch University, Arba Minch, Ethiopia ²⁵Midwifery Department, Arba Minch University, Injbara, Ethiopia

²⁶Department of Population Health Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia

²⁷Medical Technical Institute, Erbil Polytechnic University, Erbil, Iraq

²⁸Department of Information Systems, College of Economics and Political Science, Sultan Qaboos University, Muscat, Oman

²⁹Department of Health Care Management and Economics, Urmia University of Medical Science, Urmia, Iran

³⁰Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran

³¹Health Economics Department, Iran University of Medical Sciences, Tehran, Iran ³²Department of Health Policy and Management, Kuwait University, Safat, Kuwait ³³International Centre for Casemix and Clinical Coding, National University of Malaysia, Bandar Tun Razak, Malaysia

³⁴Department of Epidemiology, Arak University of Medical Sciences, Arak, Iran ³⁵Physiotherapy Department, The University of Jordan, Amman, Jordan ³⁶King Saud University, Riyadh, Saudi Arabia

³⁷Clinical Practice Guidelines Unit, King Saud University, Riyadh, Saudi Arabia ³⁸Alexandria Center for Evidence-Based Clinical Practice Guidelines, Alexandria University, Alexandria, Egypt

³⁹Carol Davila University of Medicine and Pharmacy, Bucharest, Romania ⁴⁰Department of Epidemiology and Biostatistics, Health Promotion Research Center,

Zahedan, Iran ⁴¹Department of Health Policy and Administration, University of the Philippines Manila, Manila, Philippines

⁴²Department of Applied Social Sciences, Hong Kong Polytechnic University, Hong Kong, China

⁴³Department of Parasitology, Mazandaran University of Medical Sciences, Sari, Iran ⁴⁴Department of Microbiology and Immunology, Iranshahr University of Medical Sciences, Iranshahr, Iran

⁵Department of Sociology and Social Work, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Center for International Health, Ludwig Maximilians University, Munich, Germany ⁴⁷Social Determinants of Health Research Center, Birjand University of Medical

Sciences, Birjand, Iran ⁴⁸Department of Health Promotion and Education, Tehran University of Medical

Sciences, Tehran, Iran ⁴⁹School of Health Sciences, Birmingham City University, Birmingham, UK

⁵⁰Regional Centre for the Analysis of Data on Occupational and Work-related Injuries and Diseases, Local Health Unit Tuscany Centre, Florence, Italy

School of Science and Health, Western Sydney University, Sydney, New South Wales Australia

⁵²Oral Health Services, Sydney Local Health District, Sydney, New South Wales, Australia

53 Plastic Surgery Department, University of Texas, Houston, TX, USA

⁵⁴The Judith Lumley Centre, La Trobe University, Melbourne, Victoria, Australia ⁵⁵General Office for Research and Technological Transfer, Peruvian National Institute of Health, Lima, Peru

⁵⁶School of Public Health. Curtin University. Perth. Western Australia. Australia ⁵⁷Department of Health Policy Planning and Management, University of Health and Allied Sciences, Ho, Ghana

⁵⁸Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran

⁵⁹Public Health Risk Sciences Division, Public Health Agency of Canada, Toronto, Ontario, Canada

⁶⁰Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada ⁶¹Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India

⁶²Biochemistry Unit, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia ⁶³School of Health Sciences, Univeristi Sultan Zainal Abidin, Kuala Terengganu, Malaysia

⁶⁴Institute of Health Management Research, Indian Institute of Health Management Research University, Jaipur, India

Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA ⁶⁶Health Policy and Management Department, Tehran University of Medical Sciences, Tehran, Iran

Department of Demography, University of Groningen, Groningen, Netherlands ⁶⁸Population Research Centre, Institute for Social and Economic Change, Bengaluru, India

⁶⁹Department of Hypertension, Medical University of Lodz, Lodz, Poland ⁷⁰Polish Mothers' Memorial Hospital Research Institute, Lodz, Poland

⁷¹School of Health Sciences, Walden University, Minneapolis, MN, USA

⁷²Department of Noncommunicable Diseases, Bangladesh University of Health Sciences (BUHS), Dhaka, Bangladesh

³Department of Research, Public Health Perspective Nepal, Pokhara-Lekhnath Metropolitan City, Nepal

School of Psychology, University of Auckland, Auckland, New Zealand

⁷⁵Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany

⁷⁶T.H. Chan School of Public Health, Harvard University, Boston, MA, USA ⁷⁷Occupational Health Department, Kermanshah University of Medical Sciences, Kermanshah, Iran

⁷⁸Health Human Resources Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

⁹Department of Psychiatry, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA

⁸⁰Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA

⁸¹Department of Community Medicine, Gandhi Medical College Bhopal, Bhopal, India ⁸²Jazan University, Jazan, Saudi Arabia

⁸³Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran

i147

⁸⁴Psychiatry Department, Bahir Dar University, Bhair Dar, Ethiopia

⁸⁵Nuffield Department of Population Health, University of Oxford, Oxford, UK ⁸⁶Department of Internal Medicine, University of São Paulo, São Paulo, Brazil ⁸⁷Department of Nutrition and Dietetics, Mekelle University, Mekelle, Ethiopia ⁸⁸Department of Internal Medicine, United Arab Emirates University, Al Ain, United

Arab Emirates ¹⁹Social and Clinical Pharmacy, Charles University, Hradec Kralova, Czech Republic ⁹⁰Department of Community Medicine, All India Institute of Medical Sciences, Nagpur, India

⁹¹Department of Community Medicine, Datta Meghe Institute of Medical Sciences, Wardha, India

⁹²Internal Medicine Department, University of Massachusetts Medical School, Springfield, MA, USA 93 Department of Statistical and Computational Genomics, National Institute of

Biomedical Genomics, Kalyani, India

⁹⁴Department of Statistics. University of Calcutta, Kolkata, India

⁹⁵Centre for Global Child Health, University of Toronto, Toronto, Ontario, Canada ⁹⁶Centre of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan

⁹⁷Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan

⁹⁸Social Determinants of Health Research Center, Babol University of Medical Sciences, Babol, Iran

⁹⁹Department of Internal Medicine, Manipal Academy of Higher Education, Mangalore, India

¹⁰⁰Department of Epidemiology and Psychosocial Reseach, Ramón de la Fuente Muñiz National Institute of Psychiatry, Mexico City, Mexico

⁰¹Centre for Adolescent Health, Murdoch Childrens Research Institute, Melbourne, Victoria. Australia

¹⁰²School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia

¹⁰³Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy

¹⁰⁴ Transport and Road Safety (TARS) Research Department, University of New South Wales, Sydney, New South Wales, Australia

¹⁰⁵Division of Hematology and Oncology, Georgetown University, Washington DC,

USA ¹⁰⁶Department of Epidemiology and Evidence Based Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia

¹⁰⁷Department of Health Sciences, University of Leicester, Leicester, UK ¹⁰⁸Research Department, Golden Community, Kathmandu, Nepal

¹⁰⁹Centre for Population Health Sciences, Nanyang Technological University, Singapore, Singapore

¹¹⁰Global eHealth Unit, Imperial College London, London, UK

¹¹¹Department of Population and Health, Metropolitan Autonomous University, Mexico City, Mexico ¹¹²Research Unit on Applied Molecular Biosciences (UCIBIO), University of Porto,

Porto, Portugal

¹¹³Department of Psychiatry, University of São Paulo, São Paulo, Brazil

¹¹⁴Colombian National Health Observatory, National Institute of Health, Bogota, Colombia

¹¹⁵Epidemiology and Public Health Evaluation Group, National University of Colombia, Bogota, Colombia

¹¹⁶Primary Care Services Area, Central Health Directorate, Region Friuli Venezia Giulia, Trieste, Italy

¹⁷Department of Medicine (DAME), University of Udine, Udine, Italy

¹¹⁸National School of Public Health, Carlos III Health Institute, Madrid, Spain ¹¹⁹Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada

¹²⁰Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia

¹²¹School of Public Health, University of Hong Kong, Hong Kong, China

¹²²Institute of Applied Health Research, University of Birmingham, Birmingham, UK ¹²³Swedish Neuroscience Institute, Swedish Brain and Spine Specialists, Seattle, WA, USA

¹²⁴Department of Medicine, University of Toronto, Toronto, Ontario, Canada

¹²⁵Department of Public Health, Texila American University, Georgetown, Guyana ¹²⁶2nd Department of Ophthalmology, University of Athens, Haidari, Greece

¹²⁷Ophthalmology Independent Consultant, Athens, Greece

¹²⁸Pediatrics Department, Harvard University, Boston, MA, USA

¹²⁹Neonatology Department, Beth Israel Deaconess Medical Center, Boston, MA, USA ¹³⁰Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Washington, Seattle, WA, USA

¹³¹Department of Biochemistry and Biomedical Science, Seoul National University Hospital, Seoul, South Korea

¹³²Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh

¹³³Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA

⁴Department of Pulmonary Medicine, Christian Medical College and Hospital

(CMC), Vellore, India ¹³⁵Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam ¹³⁶School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia

¹³⁷Centro Hospitalar Universitário do Porto - Servico de Oftalmologia, University of Porto, Porto, Portugal

¹³⁸Department of Environmental Health, Imam Abdulrahman Bin Faisal University, Dammam. Saudi Arabia

¹³⁹Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran

¹⁴⁰Population and Development, Facultad Latinoamericana de Ciencias Sociales Mexico, Mexico City, Mexico

¹⁴¹Australian Institute for Suicide Research and Prevention, Griffith University, Mount

Gravatt, Queensland, Australia ¹⁴²Department of Medical Laboratory Sciences, Bahir Dar University, Bahir Dar, Ethiopia

⁴³School of Pharmacy, Aksum University, Aksum, Ethiopia

¹⁴⁴Addis Ababa University, Addis Ababa, Ethiopia

¹⁴⁵Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK

¹⁴⁶School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia

¹⁴⁷Division of Cardiology, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA

¹⁴⁸Department of Epidemiology, Shiraz University of Medical Sciences, Shiraz, Iran

¹⁴⁹Faculty of Pharmacy, University of Porto, Porto, Portugal

¹⁵⁰Tehran University of Medical Sciences, Tehran, Iran

¹⁵¹Center of Excellence in Public Health Nutrition, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

¹⁵²School of Health and Biomedical Sciences, Royal Melbourne Institute of

Technology University, Bundoora, Victoria, Australia

³Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia

¹⁵⁴Faculty of Medicine, University of Belgrade, Belgrade, Serbia

¹⁵⁵Public Health Department, Hawassa University, Hawassa, Ethiopia

¹⁵⁶Curtin University, Perth, Western Australia, Australia

¹⁵⁷Department of Global Health and Social Medicine, Harvard University, Boston, MA, ÚSA

¹⁵⁸Department of Social Services. Tufts Medical Center. Boston. MA. USA

¹⁵⁹Department of Statistics, Debre Markos University, Debre Markos, Ethiopia

¹⁶⁰Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden

¹⁶¹World Health Programme, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada

¹⁶²Department of Pathology, Stavanger University Hospital, Stavanger, Norway ¹⁶³Norwegian Institute of Public Health, Oslo, Norway

¹⁶⁴Department of Clinical Pathology, Mansoura University, Mansoura, Egypt ¹⁶⁵Multiple Sclerosis Research Center, Tehran University of Medical Sciences, Tehran, Iran

¹⁶⁶Epidemiology and Population Health, York University, Vancouver, British Columbia,

Canada ¹⁶⁷Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada

⁸Biology Department, Salahaddin University-Erbil, Erbil, Iraq

¹⁶⁹Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy

⁰Department of Psychology, Federal University of Sergipe, Sao Cristovao, Brazil ¹⁷¹Non-communicable Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran

²Department of Neurobiology, Karolinska Institutet, Stockholm, Sweden

¹⁷³Division of Neurology, University of Ottawa, Ottawa, Ontario, Canada

¹⁷⁴REQUIMTE/LAQV, University of Porto, Porto, Portugal

¹⁷⁵Research Centre on Public Health (CESP), University of Milan Bicocca, Monza, Italy ¹⁷⁶Department of Population Medicine and Health Services Research, Bielefeld University, Bielefeld, Germany

⁷⁷Department of Child Dental Health, Obafemi Awolowo University, Ile-Ife, Nigeria ¹⁷⁸Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow,

Russia ¹⁷⁹Abadan School of Medical Sciences, Abadan University of Medical Sciences, Abadan, Iran

180 Department of Family Medicine and Primary Care, University of the Witwatersrand, Johannesburg, South Africa

⁸¹College of Public Health, Medical and Veterinary Science, James Cook University, Douglas, Queensland, Australia

182 Royal Life Saving Society, Sydney, New South Wales, Australia

¹⁸³Department of Dermatology, Kobe University, Kobe, Japan

¹⁸⁴Gene Expression & Regulation Program, The Wistar Institute, Philadelphia, PA, USA ¹⁸⁵Public Health Department, Madda Walabu University, Bale Robe, Ethiopia

¹⁸⁶Department of Nursing and Midwifery, Addis Ababa University, Addis Ababa, Ethiopia
 ¹⁸⁷Pharmacy Department, Mekelle University, Mekelle, Ethiopia
 ¹⁸⁷Ethiopia

¹⁸⁸Department of Nursing, Aksum University, Aksum, Ethiopia

¹⁸⁹Department of Nursing, Mekelle University, Mekelle, Ethiopia ¹⁹⁰Public Health, Haramaya University, Harar, Ethiopia

¹⁹¹Bahir Dar University, Bahir Dar, Ethiopia

¹⁹²Haramava University, Dire Dawa, Ethiopia

¹⁹³Department of Pharmacy, Wollo University, Dessie, Ethiopia

¹⁹⁴Department of Nursing, Arba Minch University, Arba Minch, Ethiopia

¹⁹⁵Department of Medical Surgery, Tabriz University of Medical Sciences, Tabriz, Iran ¹⁹⁶Occupational Health Department, Arak University of Medical Sciences, Arak, Iran ¹⁹⁷Department of Nursing and Midwifery, Kurdistan University of Medical Sciences, Sanandaj, Iran

¹⁹⁸Science and Research Branch, Islamic Azad University, Tehran, Iran

¹⁹⁹Young Researchers and Elite Club, Islamic Azad University, Rasht, Iran ²⁰⁰Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan

²⁰¹Chairman BOG, Afro-Asian Institute, Lahore, Pakistan

²⁰²Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia ²⁰³Nursing and Midwifery Department, Mazandaran University of Medical Sciences,

Sari, Iran²⁰⁴Center for Clinical and Epidemiological Research, University of São Paulo, Sao

²⁰⁵Internal Medicine Department, University of São Paulo, Sao Paulo, Brazil ²⁰⁶Department of Dermatology, Boston University, Boston, MA, USA

²⁰⁷Institute of Public Health, United Arab Emirates University, Al Ain, United Arab Emirates

²⁰⁸Instituto de Patologia Tropical e Saúde Pública, Federal University of Goias, Goiânia, Brazil ²⁰⁹Department of Epidemiology and Biostatistics, Zhengzhou University, Zhengzhou,

China

²¹⁰Non-Communicable Diseases (NCD), World Health Organization (WHO), New Delhi India

²¹¹Department of Public Health, Erasmus University Medical Center, Rotterdam, Netherlands

²¹²Global and Community Mental Health Research Group, University of Macau, Macao, China

²¹³Department of Family and Community Medicine, Arabian Gulf University, Manama, Bahrain

²¹⁴School of Health and Environmental Studies. Hamdan Bin Mohammed Smart University, Dubai, United Arab Emirates

²¹⁵Biomedical Research Networking Center for Mental Health Network (CiberSAM), Madrid, Spain

²¹⁶Research and Development Unit, San Juan de Dios Sanitary Park, Sant Boi de Llobregat, Spain

⁷Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran

²¹⁸Department of Microbiology, Tehran University of Medical Sciences, Tehran, Iran ²¹⁹Centre for International Health and Section for Ethics and Health Economics, University of Bergen, Bergen, Norway

²²⁰Gastrointestinal and Liver Disease Research Center, Guilan University of Medical Sciences, Rasht, Iran

Guilan University of Medical Sciences, Rasht, Iran

222 School of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran ²²³Independent Consultant, Tabriz, Iran

²²⁴Department of Public Health, Mizan-Tepi University, Tepi, Ethiopia

²²⁵Unit of Epidemiology and Social Medicine, University Hospital Antwerp, Wilrijk, Belgium

²²⁶Department of Clinical Sciences, Karolinska University Hospital, Stockholm,

Sweden ²²⁷Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

²²⁸Research Coordination, AC Environments Foundation, Cuernavaca, Mexico

²²⁹CISS, National Institute of Public Health, Cuernavaca. Mexico ²³⁰Department of Urban Planning and Design, University of Hong Kong, Hong Kong,

China ²³¹Center of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi

Minh City, Vietnam

²³²Department of Pediatrics, Dell Medical School, University of Texas Austin, Austin, TX. USA

²³³Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India ²³⁴Department of Pharmacology and Therapeutics, Dhaka Medical College, Dhaka,

Bangladesh ²³⁵Department of Pharmacology, Bangladesh Industrial Gases Limited, Tangail, Bangladesh

²³⁶Department of Computer Engineering, Islamic Azad University, Tehran, Iran ²³⁷Computer Science Department, University of Human Development, Sulaymaniyah, Irag

²³⁸Department of Legal Medicine and Bioethics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania ²³⁹Clinical Legal Medicine Department, National Institute of Legal Medicine Mina

Minovici, Bucharest, Romania

²⁴⁰Department of Epidemiology and Health Statistics, Central South University, Changsha, China

²⁴¹Department of Health Promotion and Education, University of Ibadan, Ibadan, Nigeria

²⁴²Department of Community Medicine, University of Ibadan, Ibadan, Nigeria

²⁴³Department of Family Medicine, Bangalore Baptist Hospital, Bangalore, India ²⁴⁴Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

²⁴⁵School of Psychology and Public Health, La Trobe University, Bundoora, Melbourne, Victoria, Australia

²⁴⁶Institute for Physical Activity and Nutrition, Deakin University, Burwood, Victoria,

Australia ²⁴⁷Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia ²⁴⁸School of Public Health and Community Medicine, University of New South Wales, Sydney, New South Wales, Australia

Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran ²⁵⁰Department for Health Care and Public Health, Sechenov First Moscow State Medical University, Moscow, Russia

¹Social Development & Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

²⁵²Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA ²⁵³Institute of Medicine, University of Colombo, Colombo, Sri Lanka

²⁵⁴Faculty of Graduate Studies, University of Colombo, Colombo, Sri Lanka

²⁵⁵Department of Community Medicine, Banaras Hindu University, Varanasi, India

²⁵⁶Health Promotion and Education, University of Ibadan, Ibadan, Nigeria

²⁵⁷Department of Ophthalmology, Heidelberg University, Mannheim, Germany

²⁵⁸Beijing Ophthalmology & Visual Science Key Laboratory, Beijing Tongren Hospital, Beijing, China

²⁵⁹Auckland University of Technology, Auckland, New Zealand

²⁶⁰Community Medicine Department, Manipal Academy of Higher Education, Mangalore, India

²⁶¹Department of Family Medicine and Public Health, University of Opole, Opole, Poland

²⁶²School of Health Sciences, Savitribai Phule Pune University, Pune, India

²⁶³Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia ²⁶⁴Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran Iran

²⁶⁵Department of Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran

266 Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases. Oazvin University of Medical Sciences. Oazvin.

Iran 267 Health Services Management Department, Qazvin University of Medical Sciences,

Qazvin, Iran 268School of Public Health, Department of Health informatics and Health Innovation, A.C.S. Medical College and Hospital, Mekelle, Ethiopia

²⁶⁹Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, India

⁷⁰Department of Epidemiology, Hamadan University of Medical Sciences, Hamadan,

Iran ²⁷¹Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran

University of Medical Sciences, Tehran, Iran 272Pars Advanced and Minimally Invasive Medical Manners Research Center, Iran University of Medical Sciences, Tehran, Iran

²⁷³Department of Applied Physics, The John Paul II Catholic University of Lublin,

Lublin Voivodeship, Poland ²⁷⁴Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine

⁷⁵International Research Center of Excellence, Institute of Human Virology Nigeria,

Abuja, Nigeria ²⁷⁶Julius Centre for Health Sciences and Primary Care, Utrecht University, Utrecht, Netherlands

²⁷⁷Open, Distance and eLearning Campus, University of Nairobi, Nairobi, Kenya

²⁷⁸Department of Dermatology, Wolaita Sodo University, Wolaita Sodo, Ethiopia ²⁷⁹Department of Public Health, Jordan University of Science and Technology, Irbid, Jordan

²⁸⁰Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

²⁸¹School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan

²⁸²Department of Global Health, University of Washington, Seattle, WA, USA

²⁸³Department of Physiology, Baku State University, Baku, Azerbaijan

²⁸⁴Epidemiology, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia

Inj Prev: first published as 10.1136/injuryprev-2019-043531 on 24 August 2020. Downloaded from http://injuryprevention.bmj.com/ on February 3, 2021 at UCL Library Services. Protected by

copyrigh:

²⁸⁵Epidemiology and Biostatistics Department, Health Services Academy, Islamabad, Pakistan

²⁸⁶Department of Population Studies, International Institute for Population Sciences, Mumbai, India

²⁸⁷Department of Health Research, Indian Council of Medical Research, New Delhi, India ²⁸⁸Centre for Ethics, Jawahar Lal Nehru University, New Delhi, India

²⁸⁹Department of Psychiatry, Kermanshah University of Medical Sciences, Kermanshah, Iran

²⁹⁰Nuffield Department of Surgical Sciences, Oxford University Global Surgery Group, University of Oxford, Oxford, UK

²⁹¹Research and Data Solutions, Synotech Consultant, Nairobi, Kenya

²⁹²Department of Preventive Medicine, Korea University, Seoul, South Korea ²⁹³School of Medicine, Xiamen University Malaysia, Sepang, Malaysia

²⁹⁴Department of Health Sciences, Northeastern University, Boston, MA, USA ²⁹⁵Department of Nursing and Health Promotion, Oslo Metropolitan University, Oslo,

Norway ²⁹⁶School of Health Sciences, Kristiania University College, Oslo, Norway

²⁹⁷Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

²⁹⁸Brain Engineering Research Center, Institute for Research in Fundamental Sciences, Tehran, Iran

²⁹⁹Public Health Dentistry Department, Krishna Institute of Medical Sciences Deemed to be University, Karad, India

Environmental Health Engineering, Arak University of Medical Sciences, Arak, Iran ³⁰¹CIBERSAM, San Juan de Dios Sanitary Park, Sant Boi de Llobregat, Spain

³⁰²Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain ³⁰³Department of Zoology, University of Oxford, Oxford, UK

³⁰⁴Harvard Medical School, Harvard University, Boston, MA, USA

³⁰⁵Department of Anthropology, Panjab University, Chandigarh, India

³⁰⁶Department of Demography, University of Montreal, Montreal, Quebec, Canada ³⁰⁷Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada

³⁰⁸Department of Public Health, Yuksek Ihtisas University, Ankara, Turkey

³⁰⁹Department of Public Health, Hacettepe University, Ankara, Turkey ³¹⁰Department of Family and Community Health, University of Health and Allied

Sciences, Ho, Ghana ¹Department of Psychology and Health Promotion, University of KwaZulu-Natal, Durban, South Africa

³¹²Community Medicine Department, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, India

³¹³Department of Psychiatry, University of Nairobi, Nairobi, Kenya

³¹⁴Division of Psychology and Language Sciences, University College London, London, UK

³¹⁵Department of Medicine Brigham and Women's Hospital, Harvard University, Boston, MA, USA ³¹⁶Orthopaedics Department, Base Hospital Lucknow Cantt, Lucknow, India

³¹⁷Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee, India

³¹⁸Department of Community and Family Medicine, University of Baghdad, Baghdad, Iraq

³¹⁹HelpMeSee, New York, NY, USA

³²⁰International Relations, Mexican Institute of Ophthalmology, Queretaro, Mexico ³²¹Department of Otorhinolaryngology (ENT), Father Muller Medical College,

Mangalore, India ³²²Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran

³²³Institute of Clinical Physiology, National Research Council, Pisa, Italy

³²⁴Clinical Medicine and Community Health, University of Milan, Milano, Italy ³²⁵College of Optometry, Nova Southeastern University, Fort Lauderdale, FL, USA

³²⁶School of Pharmacy, Monash University, Bandar Sunway, Malaysia

³²⁷School of Pharmacy, Taylor's University Lakeside Campus, Subang Jaya, Malaysia ³²⁸Department of Systems, Populations and Leadership, University of Michigan, Ann Arbor, MI, USA ³²⁹Department of Health Metrics Sciences, School of Medicine, University of

Washington, Seattle, WA, USA

³³⁰Department of Medicine, University of São Paulo, Sao Paulo, Brazil

³³¹Health Data Research UK, Swansea University, Swansea, UK

³³²Center for Integration of Data and Health Knowledge, FIOCRUZ: Cidacs Center for Integration of Data and Health Knowledge, Salvador, Brazil

³³³Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, England

³³⁴Pathology Department, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

³³⁵Ophthalmology Department, Aswan Faculty of Medicine, Aswan, Egypt ³³⁶Institute of Medicine, Tribhuvan University, Kathmandu, Nepal ³³⁷Department of Public Health, Trnava University, Trnava, Slovakia

³³⁸Department of Primary Care and Public Health, Imperial College London, London, UK

Original research

³³⁹Health Education and Research Department, SDM College of Medical Sciences & Hospital, Dharwad, India

³⁴⁰Health University, Raiiy Gandhi University of Health Sciences, Bangalore, India ³⁴¹Department of Maternal and Child Nursing and Public Health, Federal University of Minas Gerais, Belo Horizonte, Brazil

³⁴²Ophthalmology Department, Iran University of Medical Sciences, Tehran, Iran ³⁴³Ophthalmology Department, University of Manitoba, Winnipeg, Manitoba, Canada

³⁴⁴Department of Surgery, University of Virginia, Charlottesville, VA, USA ³⁴⁵Surgery Department, Emergency University Hospital Bucharest, Bucharest, Romania

³⁴⁶Psychiatry Department, National Institute of Mental Health and Neurosciences, Bengaluru, Índia

³⁴⁷Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran

³⁴⁸Institute for Social Science Research, The University of Queensland, Brisbane,

Queensland, Australia ³⁴⁹Department of Health Sciences, University of York, York, UK

³⁵⁰Department of Midwifery-Reproductive Health, Hamadan University of Medical Sciences, Hamadan, Iran

¹Research Department, The George Institute for Global Health, New Delhi, India ³⁵²School of Medicine, University of New South Wales, Sydney, New South Wales,

Australia ³⁵³Neurology Department, Janakpuri Super Specialty Hospital Society, New Delhi, India

³⁵⁴Department of Neurology, Govind Ballabh Institute of Medical Education and Research. New Delhi. India

³⁵⁵Division of Epidemiology and Prevention, Institute of Human Virology, University of Maryland, Baltimore, MD, USA

³⁵⁶Peru Country Office, United Nations Population Fund (UNFPA), Lima, Peru

³⁵⁷Forensic Medicine Division, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

³⁵⁸Department of Epidemiology and Biostatistics, Haramaya University, Harar, Ethiopia

³⁵⁹Breast Surgery Unit, Helsinki University Hospital, Helsinki, Finland ³⁶⁰University of Helsinki, Helsinki, Finland

³⁶¹Neurocenter, Helsinki University Hospital, Helsinki, Finland

³⁶²School of Health Sciences, University of Melbourne, Parkville, Victoria, Australia

³⁶³Statistics Department, Debre Markos University, Debre Markos, Ethiopia ³⁶⁴Clinical Microbiology and Parasitology Unit, Zora Profozic Polyclinic, Zagreb,

Croatia

³⁶⁵University Centre Varazdin, University North, Varazdin, Croatia

³⁶⁶Center for Innovation in Medical Education, Pomeranian Medical University, Szczecin, Poland

⁷Pomeranian Medical University, Szczecin, Poland

³⁶⁸Department of Propedeutics of Internal Diseases & Arterial Hypertension, Pomeranian Medical University, Szczecin, Poland

⁵⁹Pacific Institute for Research & Evaluation, Calverton, MD, USA

³⁷⁰Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India

³⁷¹Global Institute of Public Health (GIPH), Ananthapuri Hospitals and Research

Centre, Trivandrum, India ³⁷²Department of Statistics and Econometrics, Bucharest University of Economic Studies, Bucharest, Romania

⁷³President's Office, National Institute of Statistics, Bucharest, Romania

³⁷⁴Faculty of Internal Medicine, Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan ³⁷⁵Department of Atherosclerosis and Coronary Heart Disease, National Center of Cardiology and Internal Disease, Bishkek, Kyrgyzstan

³⁷⁶Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany

³⁷⁷Institute of Addiction Research (ISFF), Frankfurt University of Applied Sciences, Frankfurt, Germany

³⁷⁸Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ³⁷⁹Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

⁸⁸⁰Health Equity Research Center, Tehran University of Medical Sciences, Tehran, Iran ³⁸¹Internal Medicine Department, King Saud University, Riyadh, Saudi Arabia

³⁸²Department of Information Technology, University of Human Development, Sulaymaniyah, Iraq

³⁸³Department of Epidemiology and Biostatistics, Shahrekord University of Medical SciencesShahrekord, Iran

³⁸⁴Department of Nursing, Shahroud University of Medical Sciences, Shahroud, Iran ³⁸⁵Health Systems and Policy Research Unit, Ahmadu Bello University, Zaria, Nigeria

³⁸⁶Department of Public Health, Samara University, Samara, Ethiopia ³⁸⁷Iran National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran

Original research

³⁸⁸Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran

³⁸⁹Faculty of Life Sciences and Medicine, King's College London, London, UK ³⁹⁰Clinical Epidemiology and Public Health Research Unit, Burlo Garofolo Institute for Maternal and Child Health, Trieste, Italy

³⁹¹Department of Public Health Medicine, University of KwaZulu-Natal, Durban, South Africa

³⁹²Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran

³⁹³Kermanshah University of Medical Sciences, Kermanshah, Iran

³⁹⁴Social Determinants of Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran

⁵Department of Épidemiology and Biostatistics, Kurdistan University of Medical Sciences, Sanandaj, Iran

³⁹⁶Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran

³⁹⁷International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland, Australia

³⁹⁸Gorgas Memorial Institute for Health Studies, Panama City, Panama

³⁹⁹Department of Psychiatry, Badhir Dar University, Ethiopia

⁴⁰⁰Department of Epidemiology and Biostatistics, University of Gondar, Gondar, Ethiopia

⁴⁰¹School of Medical Sciences, Science University of Malaysia, Kubang Kerian, Malaysia

¹⁰²Department of Pediatric Medicine, Nishtar Medical University, Multan, Pakistan ⁴⁰³Department of Pediatrics & Pediatric Pulmonology, Institute of Mother & Child Care, Multan, Pakistan

⁴Clinical Research Development Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

⁴⁰⁵Research and Analytics, Initiative for Financing Health and Human Development, Chennai, India

⁴⁰⁶Research and Analytics, Bioinsilico Technologies, Chennai, India

⁴⁰⁷Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA

⁴⁰⁸Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia

⁴⁰⁹Experimental Surgery and Oncology Laboratory, Kursk State Medical University of the Ministry of Health of the Russian Federation, Kursk, Russia

⁴¹⁰Department of Epidemiology & Biostatistics, Kermanshah University of Medical Sciences, Kermanshah, Iran ⁴¹¹Suraj Eye Institute, Nagpur, India

⁴¹²Hospital of the Federal University of Minas Gerais, Federal University of Minas Gerais, Belo Horizonte, Brazil

⁴¹³Mental Health Research Center, IUMS, Tehran, Iran

⁴¹⁴Preventive Medicine and Public Health Research Center, IUMS, Tehran, Iran ⁴¹⁵Department of Forensic Medicine and Toxicology, Manipal Academy of Higher

Education, Manipal, India ⁴¹⁶Department of Pediatrics, Arak University of Medical Sciences, Arak, Iran

⁴¹⁷Iranian Ministry of Health and Medical Education, Tehran, Iran

⁴¹⁸Cochrane South Africa, South African Medical Research Council, Cape Town, South

Africa ⁴¹⁹Department of General Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania

⁴²⁰Department of General Surgery, Emergency Hospital of Bucharest, Bucharest,

Romania ⁴²¹Department of Biological Sciences, University of Embu, Embu, Kenya ⁴²²Institute for Global Health Innovations, Duy Tan University, Hanoi, Vietnam

⁴²³Project of ADB, National Institute of Nutrition, Hanoi, Vietnam

⁴²⁴Industrial Management Department, Hanoi University of Science and Technology, Hanoi, Vietnam

⁴²⁵Department of Pharmacology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

⁴²⁶Heidelberg University Hospital, Heidelberg, Germany

⁴²⁷Public Health Department, Universitas Negeri Semarang, Kota Semarang, Indonesia

⁴²⁸Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City,

Taiwan ⁴²⁹School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa

⁴³⁰Centre of Cardiovascular Research and Education in Therapeutics, Monash University, Melbourne, Victoria, Australia

⁴³¹Independent Consultant, Accra, Ghana

⁴³²UCIBIO, University of Porto, Porto, Portugal

⁴³³Reproductive Health Sciences, Department Obstetrics and Gynecology, University

of Ibadan, Ibadan, Nigeria 434Department of Preventive Medicine, Kyung Hee University, Dongdaemun-gu, South Korea

⁴³⁵Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada

⁴³⁶Department of Psychiatry, University of Lagos, Lagos, Nigeria

⁴³⁷Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario. Canada

⁴³⁸Diplomacy and Public Relations Department, University of Human Development, Sulaimaniyah, Iraq

⁴³⁹Department of Pharmacology and Therapeutics, University of Nigeria Nsukka, Enugu, Nigeria ⁴⁴⁰Applied Research Division, Public Health Agency of Canada, Ottawa, Ontario,

Canada

441 School of Psychology, University of Ottawa, Ottawa, Ontario, Canada

⁴⁴²Department of Global Health Nursing, St. Luke's International University, Chuo-ku,

Japan⁴⁴³Academic Department, Unium Ltd, Moscow, Russia

⁴⁴⁴Department of Project Management, National Research University Higher School of Economics, Moscow, Russia

445 Department of Respiratory Medicine, Jagadguru Sri Shivarathreeswara Academy of Health Education and Research, Mysore, India

⁴⁴⁶Department of Forensic Medicine, Manipal Academy of Higher Education, Manipal,

India 447 Department of Medicine, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario, Canada

448 Parasitology and Mycology Department, Shiraz University of Medical Sciences, Shiraz, Iran

⁴⁴⁹Augenpraxis Jonas, Heidelberg University, Heidelberg, Germany

⁴⁵⁰Department of Medical Humanities and Social Medicine, Kosin University, Busan, South Korea

- ¹Research and Evaluation Department, Population Council, New Delhi, India
- ⁴⁵²Indian Institute of Health Management Research University, Jaipur, India

⁴⁵³Department of Pediatircs, RD Gardi Medical College, Ujjain, India

⁴⁵⁴Public Health Sciences, Karolinska Institutet, Stockholm, Sweden

⁴⁵⁵Regional Medical Research Centre, Indian Council of Medical Research, Bhubaneswar, India

⁴⁵⁶Department of Midwifery, Wolaita Sodo University, Wolaita Sodo, Ethiopia ⁴⁵⁷School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia

⁴⁵⁸Center for Research and Innovation, Ateneo De Manila University, Pasig City, Philippines

⁴⁵⁹Department of Orthopedics, Yenepoya Medical College, Mangalore, India ⁴⁶⁰Department of Psychiatry, Department of Epidemiology, Columbia University, New York, NY, USA

⁴⁶¹Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China ⁴⁶²Department of Epidemiology and Evidence-Based Medicine, Sechenon University, Moscow, Russia

⁴⁶³School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada

⁴⁶⁴Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran

465 Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India 466 Health Sciences Department, Muhammadiyah University of Surakarta, Sukoharjo,

Indonesia

⁷Department of Chemistry, Sharif University of Technology, Tehran, Iran ⁴⁶⁸Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran

⁴⁶⁹College of Medicine, University of Central Florida, Orlando, FL, USA

⁴⁷⁰College of Graduate Health Sciences, A.T. Still University, Mesa, AZ, USA

⁴⁷¹Department of Epidemiology & Biostatistics, Contech School of Public Health, Lahore. Pakistan

⁴⁷²Department of Medicine, University of Alberta, Edmonton, Alberta, Canada

⁴⁷³Department of Immunology, Mazandaran University of Medical Sciences, Sari, Iran ⁴⁷⁴Molecular and Cell Biology Research Center, Mazandaran University of Medical

Sciences, Sari, Iran ⁴⁷⁵Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur

University of Medical Sciences, Ahvaz, Iran

⁴⁷⁶Metabolomics and Genomics Research Center, Tehran University of Medical Sciences, Tehran, Iran

⁴⁷⁷Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran ⁴⁷⁸School of Nursing and Healthcare Professions, Federation University Australia, Berwick, Victoria, Australia

⁴⁷⁹School of Nursing and Midwifery, La Trobe University, Melbourne, Victoria, Australia

⁴⁸⁰Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran ⁴⁸¹European Office for the Prevention and Control of Noncommunicable Diseases,

World Health Organization (WHO), Moscow, Russia ⁴⁸²Department of Oral Pathology, Srinivas Institute of Dental Sciences, Mangalore, India

⁴⁸³School of Behavioral Sciences and Mental Health, Tehran Institute of Psychiatry, Tehran, Iran

⁴⁸⁴Academic Public Health Department, Public Health England, London, UK ⁴⁸⁵School of Health, Medical and Applied Sciences, CQ University, Sydney, New South Wales, Australia

⁴⁸⁶Department of Computer Science, Metropolitan College, Boston University, Boston, USA

⁴⁸⁷Neurology Department, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India

⁸Brien Holden Vision Institute, Sydney, New South Wales, Australia

⁴⁸⁹Organization for the Prevention of Blindness, Paris, France

⁴⁹⁰EPIUnit - Public Health Institute University Porto (ISPUP), University of Porto, Porto, Portugal

⁴⁹¹Surgery Department, University of Minnesota, Minneapolis, MN, USA ⁴⁹²Surgery Department, University Teaching Hospital of Kigali, Kigali, Rwanda ⁴⁹³Research Directorate, Nihon Gakko University, Fernando de la Mora, Paraguay ⁴⁹⁴Research Direction, Universidad Nacional de Caaguazú, Coronel Oviedo, Paraguay ⁴⁹⁵Department of Clinical Research, Federal University of Uberlândia, Uberlândia, Brazil

⁴⁹⁶Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran

⁴⁹⁷College of Medicine, University of Sharjah, Sharjah, United Arab Emirates ⁴⁹⁸Department of Health in Disasters and Emergencies, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran ⁵⁰⁰Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran

⁵⁰¹Nanobiotechnology Center, Soran University, Soran, Iraq

⁵⁰²Public Health and Community Medicine Department, Cairo University, Giza, Egypt ⁵⁰³Urology Department, Cairo University, Giza, Egypt

⁵⁰⁴Health and Disability Intelligence Group, Ministry of Health, Wellington, New Zealand

⁵⁰⁵Department of Entomology, Ain Shams University, Cairo, Egypt

⁵⁰⁶Department of Surgery, Marshall University, Huntington, WV, USA

⁵⁰⁷ Department of Nutrition and Preventive Medicine, Case Western Reserve University, Cleveland, OH, USA

⁵⁰⁸Rheumatology Department, University Hospitals Bristol NHS Foundation Trust, Bristol, UK

⁵⁰⁹Institute of Bone and Joint Research, University of Sydney, Syndey, New South Wales, Australia

⁵¹⁰Institute of Social Medicine, University of Belgrade, Belgrade, Serbia

⁵¹¹Centre-School of Public Health and Health Management, University of Belgrade, Belgrade, Serbia

⁵¹²Health Economics, Bangladesh Institute of Development Studies (BIDS), Dhaka, Bangladesh

⁵¹³Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran ⁵¹⁴Surgery Department, Hamad Medical Corporation, Doha, Qatar

⁵¹⁵Faculty of Health & Social Sciences, Bournemouth University, Bournemouth, UK ⁵¹⁶Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA

⁵¹⁷Education Development Center, Faculty Member of Education Development Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

⁵¹⁸Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA

⁵¹⁹Department of Psychiatry, Stellenbosch University, Cape Town, South Africa ⁵²⁰Emergency Department, Manian Medical Centre, Erode, India

⁵²¹Microbiology Service, National Institutes of Health, Bethesda, MD, USA

⁵²²Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

⁵²³Department of Health Promotion and Education, Alborz University of Medical Sciences, Karaj, Iran ⁵²⁴Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

⁵²⁵Independent Consultant, Karachi, Pakistan

⁵²⁶School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

⁵²⁷Centre for Medical Informatics, University of Edinburgh, Edinburgh, UK ⁵²⁸Division of General Internal Medicine, Harvard University, Boston, MA, USA

⁵²⁹National Institute of Infectious Diseases, Tokyo, Japan

⁵³⁰College of Medicine, Yonsei University, Seodaemun-gu, South Korea

⁵³¹Division of Cardiology, Emory University, Atlanta, GA, USA ⁵³²Finnish Institute of Occupational Health, Helsinki, Finland

⁵³³Department of Health Education & Promotion, Kermanshah University of Medical Sciences, Kermanshah, Iran

534 School of Health, University of Technology Sydney, Sydney, New South Wales, Australia

535 Department of Psychology, Reykjavik University, Reykjavik, Iceland

⁵³⁶Department of Health and Behavior Studies, Columbia University, New York, NY, USA

⁵³⁷Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA

Original research

⁵³⁸Medicine Service, US Department of Veterans Affairs (VA), Birmingham, AL, USA ⁵³⁹Department of Forensic Medicine, Kathmandu University, Dhulikhel, Nepal

⁵⁴⁰Department of Epidemiology, School of Preventive Oncology, Patna, India

⁵⁴¹Department of Epidemiology, Healis Sekhsaria Institute for Public Health, Mumbai, India

⁵⁴²Medical Surgical Nursing Department, Urmia University of Medical Science, Urmia,

Iran ⁵⁴³Emergency Nursing Department, Semnan University of Medical Sciences, Semnan,

⁵⁴⁴Hospital Universitario de la Princesa, Autonomous University of Madrid, Madrid,

Spain ⁻ ⁵⁴⁵Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain

⁵⁴⁶Department of Public Health, Arba Minch University, Arba Minch, Ethiopia

⁵⁴⁷Hull York Medical School, University of Hull, Hull City, UK ⁵⁴⁸Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK

⁹Department of Psychology, Deakin University, Melbourne, Victoria, Australia ⁵⁵⁰Department of Community Medicine, Ahmadu Bello University, Zaria, Nigeria

⁵⁵¹Department of Criminology, Law and Society, University of California Irvine, Irvine,

CA, USA ⁵⁵²Department of Medicine, University of Valencia, Valencia, Spain

⁵⁵³Carlos III Health Institute, Biomedical Research Networking Center for Mental Health Network (CiberSAM), Madrid, Spain

⁴School of Social Work, University of Illinois, Urbana, IL, USA

- 555 Public Health, Arba Minch College of Health Sciences, Arba Minch, Ethiopia
- 556 School of Public Health, University of Adelaide, Adelaide, SA, Australia

⁵⁵⁷Department of Environmental Health, Wollo University, Dessie, Ethiopia ⁵⁵⁸Department of Community and Family Medicine, Iran University of Medical Sciences, Tehran, Iran

Department of Pharmacognosy, Mekelle University, Mekelle, Ethiopia

⁵⁶⁰Institute of Public Health, University of Gondar, Gondar, Ethiopia

⁵⁶¹Department of Public Health, Adigrat University, Adigrat, Ethiopia

⁵⁶²Biology Department, Moscow State University, Moscow, Russia

⁵⁶³Department of Nursing, Woldia University, Woldia, Ethiopia

⁵⁶⁴HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Kerman University of Medical Sciences, Kerman, Iran

⁶⁵Institute of Public Health, Krakow, Poland

566The Agency for Health Technology Assessment and Tariff System, Warszawa, Poland

⁵⁶⁷Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand

⁵⁶⁸Clinical Hematology and Toxicology, Military Medical University, Hanoi, Vietnam ⁵⁶⁹Department of Health Economics, Hanoi Medical University, Hanoi, Vietnam

⁵⁷⁰Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA

⁵⁷¹Mbarara University of Science and Technology, Mbarara, Uganda

⁵⁷²Department of Medicine, University of Crete, Heraklion, Greece

⁵⁷³Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,

Singapore 574 Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail

Khan, Pakistan ⁵⁷⁵TB Culture Laboratory, Mufti Mehmood Memorial Teaching Hospital, Dera Ismail Khan, Pakistan

⁵⁷⁶Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India

⁵⁷⁷Division of Health Sciences, University of Warwick, Coventry, UK

⁵⁷⁸Argentine Society of Medicine, Buenos Aires, Argentina

579 Velez Sarsfield Hospital, Buenos Aires, Argentina

⁵⁸⁰UKK Institute, Tampere, Finland

⁵⁸¹Psychosocial Injuries Research Center, Ilam University of Medical Sciences, Ilam, Iran

582 Raffles Neuroscience Centre, Raffles Hospital, Singapore, Singapore 583 Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

ⁱ⁸⁴Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy 585 Occupational Health Unit, Sant'Orsola Malpighi Hospital, Bologna, Italy

⁵⁸⁶Department of Health Care Administration and Economics, National Research

University Higher School of Economics, Moscow, Russia

⁵⁸⁷Foundation University Medical College, Foundation University, Islamabad, Pakistan

588 Department of Physical Therapy, Naresuan University, Meung District, Thailand ⁵⁸⁹Department of Human Anatomy, Histology, and Embryology, Bahir Dar University,

Bahir Dar, Ethiopia

⁵⁹⁰Department of Nursing, Wollo University, Dessie, Ethiopia

⁵⁹¹Department of Orthopaedics, Wenzhou Medical University, Wenzhou, China

⁵⁹²Public Health Science Directorate, NHS Health Scotland, Glasgow, Scotland ⁵⁹³Medical Physics Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

⁵⁹⁴Department of Preventive Medicine, Northwestern University, Chicago, IL, USA ⁵⁹⁵School of International Development and Global Studies, University of Ottawa, Ottawa, Ontario, Canada

596 Health Services Management Research Center, Kerman University of Medical Sciences, Kerman, Iran

⁷Department of Health Management, Policy and Economics, Kerman University of Medical Sciences, Kerman, Iran

⁵⁹⁸Division of Injury Prevention and Mental Health Improvement, National Center for Chronic and Noncommunicable Disease Control, Chinese Center for Disease Control and Prevention, Beijing, China ⁵⁹⁹Centre for Suicide Research and Prevention, University of Hong Kong, Hong Kong,

China

⁶⁰⁰Department of Social Work and Social Administration, University of Hong Kong, Hong Kong, China

⁶⁰¹School of Allied Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia ⁶⁰²Department of Psychopharmacology, National Center of Neurology and Psychiatry, Tokyo, Japan ⁶⁰³Department of Sociology, Yonsei University, Seoul, South Korea

⁶⁰⁴Department of Health Policy & Management, Jackson State University, Jackson, MS, USA

⁶⁰⁵School of Medicine, Tsinghua University, Beijing, China

⁶⁰⁶Department of Environmental Health, Mazandaran University of Medical Sciences, Sari Iran

⁶⁰⁷Environmental Health, Academy of Medical Science, Sari, Iran

⁶⁰⁸Department of Epidemiology and Biostatistics, Wuhan University, Wuhan, China 609 Global Health Institute, Wuhan University, Wuhan, China

⁶¹⁰School of Public Health and Management, Hubei University of Medicine, Shiyan,

China ⁶¹¹Social Determinants of Health Research Center, Ardabil University of Medical Science Ardabil Iran

²Department of Epidemiology, University Hospital of Setif, Setif, Algeria ⁶¹³Department of Medicine, School of Clinical Sciences at Monash Health, Monash

University, Melbourne, Victoria, Australia ⁶¹⁴Student Research Committee. Babol University of Medical Sciences. Babol. Iran

⁶¹⁵Department of Community Medicine, Ardabil University of Medical Science, Ardabil, Iran

⁶¹⁶Faculty of Medical Sciences, Department of Health Education, Tarbiat Modares University, Tehran, Iran

⁶¹⁷Department of Preventive Medicine, Wuhan University, Wuhan, China

⁶¹⁸School of Public Health, Wuhan University of Science and Technology, Wuhan, China

⁶¹⁹Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China

⁶²⁰Indian Institute of Public Health, Public Health Foundation of India, Gurugram, India

⁶²¹Public Health Foundation of India, Gurugram, India

⁶²²Department of Community Medicine, University of Peradeniya, Peradeniya, Sri Lanka

Acknowledgements Seyed Aljunid acknowledges the Department of Health Policy and Management, Faculty of Public Health, Kuwait University and International Centre for Casemix and Clinical Coding, Faculty of Medicine, National University of Malaysia for the approval and support to participate in this research project. Alaa Badawi acknowledges support by the Public Health Agency of Canada. Till Bärnighausen acknowledges support by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. Traolach Brugha received support from NatCen Social Research (http://natcen.ac.uk/) via NHS Digital and Department of Health and Social Care London, for the Adult Psychiatric Morbidity Survey (APMS) programme. Felix Carvalho received support from UID/MULTI/04378/2019 with funding from FCT/MCTES through national funds. Vera M Costa acknowledges support from grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006. Kebede Deribe is supported by a grant from the Wellcome Trust [grant number 201900] as part of his International Intermediate Fellowship. Tim Driscoll acknowledges that work on occupational risk factors was partially supported by funds from the World Health Organization. Eduarda Fernandes acknowledges support from UID/QUI/50006/2019 with funding from FCT/ MCTES through national funds. Yuming Guo acknowledges support from Career Development Fellowships of the Australian National Health and Medical Research Council (numbers APP1107107 and APP1163693). Sheikh Mohammed Shariful Islam is funded by a Fellowship from National Heart Foundation of Australia and Institute for Physical Activity and Nutrition, Deakin University. Mihajlo Jakovljevic acknowledges support by the Ministry of Education Science and Technological

Development of the Republic of Serbia through the Grant number OI175014; publication of results was not contingent upon Ministry's censorship or approval. Sudha Jayaraman acknowledges support from: NIH R21: 1R21TW010439-01A1 (PI); Rotary Foundation Global Grant #GG1749568 (PI); NIH P20: 1P20CA210284-01A1 (Co-PI) and DOD grant W81XWH-16-2-0040 (Co-I), during the period of this study. Yun Jin Kim acknowledges support from a grant from the Research Management Centre, Xiamen University Malaysia [grant number: XMUMRF/2018-C2/ITCM/0001]. Kewal Krishan is supported by UGC Centre of Advanced Study (CAS II) awarded to the Department of Anthropology, Panjab University, Chandigarh, India. Mansai Kumar acknowledges support from FIC/ NIH K43 1K43MH114320-01. Amanda Mason-Jones acknowledges support by the University of York. Mariam Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy's and St Thomas's National Health Service Foundation Trust and King's College London. Ilais Moreno Velasquez is supported by the Sistema Nacional de Investigación (SNI, Senacyt, Panama). Mukhammad David Naimzada acknowledges support from Government of the Russian Federation (Agreement No – 075-02-2019-967). Duduzile Ndwandwe acknowledges support from Cochrane South Africa, South African Medical Research Council. Stanislav S. Otstavnov acknowledges the support from the Government of the Russian Federation (Agreement No -075-02-2019-967). Ashish Pathak acknowledges support from Indian Council of Medical Research (ICMR), New Delhi, India (Grant number 2013-1253). Michael R Phillips acknowledges support in part by a grant from the National Natural Science Foundation of China (No.81761128031). Abdallah M. Samy received a fellowship from the Egyptian Fulbright Mission Program. Milena Santric Milicevic acknowledges the support from the Ministry of Education. Science and Technological Development. Republic of Serbia (Contract No. 175087). Seyedmojtaba Seyedmousavi was supported by the Intramural Research Program of the National Institutes of Health, Clinical Center, Department of Laboratory Medicine, Bethesda, MD, USA. Rafael Tabarés-Seisdedos was supported in part by the national grant PI17/00719 from ISCIII-FEDER. Sojib Bin Zaman acknowledges support from an "Australian Government Research Training Program (RTP) Scholarship."

Funding This study was funded by The Bill and Melinda Gates Foundation. SLJ conducts research for a grant on influenza and RSV which is funded in part by Sanofi Pasteur.

Competing interests Dr. James reports grants from Sanofi Pasteur, outside the submitted work. Dr. Driscoll reports grants from World Health Organisation, during the conduct of the study. Dr Shariful Islam is funded by a Fellowship from National Heart Foundation of Australia and Institute for Physical Activity and Nutrition, Deakin University. Dr. Ivers reports grants from National Health and Medical Research Council of Australia, during the conduct of the study. Dr. Jozwiak reports personal fees from TEVA, personal fees from ALAB, personal fees from BOEHRINGER INGELHEIM, personal fees from SYNEXUS, non-financial support from SERVIER, non-financial support from MICROLIFE, non-financial support from MEDICOVER, outside the submitted work. Walter Mendoza is currently Program Analyst Population and Development at the Peru Country Office of the United Nations Population Fund-UNFPA, which does not necessarily endorses this study. Dr. Rakovac reports grants from World Health Organization, during the conduct of the study. Dr. Sheikh reports grants from Health Data Research UK, outside the submitted work. Dr. Singh reports personal fees from Crealta/Horizon, Medisys, Fidia, UBM LLC, Trio health, Medscape, WebMD, Clinical Care options, Clearview healthcare partners, Putnam associates, Spherix, Practice Point communications, the National Institutes of Health and the American College of Rheumatology, personal fees from Speaker's bureau of Simply Speaking. Dr. Singh owns stock options in Amarin pharmaceuticals and Viking pharmaceuticals. Dr. Singh serves on the steering committee of OMERACT. an international organization that develops measures for clinical trials and receives arms-length funding from 12 pharmaceutical companies. Dr. Singh serves on the FDA Arthritis Advisory Committee. Dr. Singh is a member of the Veterans Affairs Rheumatology Field Advisory Committee. Dr. Singh is the editor and the Director of the UAB Cochrane Musculoskeletal Group Satellite Center on Network Metaanalysis, outside the submitted work. Dr. Stein reports personal fees from Lundbeck and Sun, outside the submitted work.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Availability of input data varies by source. Select data are available in a public, open-access repository. Select data are available on reasonable request. Select data may be obtained from a third party and are not publicly available. All results from the study are included in the article or uploaded as supplementary information or are available online.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/ licenses/by/4.0/.

REFERENCES

- Bank W. World development report 1993: investing in health. Oxford University Press, 1993.
- 2 Murray CJL, Callender CSKH, Kulikoff XR, et al. Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the global burden of disease study 2017. *The Lancet* 2018;392:1995–2051.
- 3 James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. The Lancet 2018;392:1789–858.
- 4 Kyu HH, Abate D, Abate KH, *et al.* Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. *The Lancet* 2018;392:1859–922.
- 5 Stanaway JD, Afshin A, Gakidou E, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. The Lancet 2018;392:1923–94.
- 6 Roth GA, Abate D, Abate KH, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. *The Lancet* 2018;392:1736–88.
- 7 Dicker D, Nguyen G, Abate D, et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the global burden of disease study 2017. *The Lancet* 2018;392:1684–735.
- 8 Foreman KJ, Naghavi M, Ezzati M. Improving the usefulness of US mortality data: new methods for reclassification of underlying cause of death. *Popul Health Metr* 2016;14.
- 9 Naghavi M, Makela S, Foreman K, et al. Algorithms for enhancing public health utility of national causes-of-death data. *Popul Health Metr* 2010;8:9.
- 10 GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the global burden of disease study 2016. *Lancet Neurol* 2019;18:56–87.
- 11 SpringerLink. Intentional injuries in the eastern Mediterranean region, 1990–2015: findings from the global burden of disease 2015 study, 2015. Available: https://link. springer.com/article/ [Accessed 29 Aug 2019].

- 12 Foreman KJ, Lozano R, Lopez AD, et al. Modeling causes of death: an integrated approach using CODEm. Popul Health Metr 2012;10:1.
- 13 Murray CJL, Lozano R, Flaxman AD, et al. Using verbal autopsy to measure causes of death: the comparative performance of existing methods. BMC Med 2014;12:5.
- 14 China Zhuhai Study. 2006-2007 China CDC | GHDx. Available: http://ghdx. healthdata.org/record/china-zhuhai-study-2006-2007-china-cdc [Accessed 15 May 2018].
- 15 GHDx. Functional outcome at 2.5, 5, 9, and 24 months after injury in the Netherlands. Available: http://ghdx.healthdata.org/record/functional-outcome-25-5-9-and-24months-after-injury-netherlands [Accessed 15 May 2018].
- 16 GHDx. Health-Related quality of life after burns: a prospective multicentre cohort study with 18 months follow-up. Available: http://ghdx.healthdata.org/record/healthrelated-quality-life-after-burns-prospective-multicentre-cohort-study-18-monthsfollow [Accessed 15 May 2018].
- 17 GHDx. Netherlands injury surveillance system 2007. Available: http://ghdx.healthdata. org/record/netherlands-injury-surveillance-system-2007 [Accessed 15 May 2018].
- 18 GHDx. Netherlands injury surveillance system 2010. Available: http://ghdx.healthdata. org/record/netherlands-injury-surveillance-system-2010 [Accessed 14 May 2018].
- 19 Mackenzie EJ, Rivara FP, Jurkovich GJ, et al. The national study on costs and outcomes of trauma. J Trauma 2007;63:S54–67.
- 20 Traumatic Brain Injury(TBI). Follow-Up registry and surveillance of TBI in the emergency department (ED); notice of availability of funds. federal register, 2002. Available: https://www.federalregister.gov/documents/2002/05/08/02-11359/ traumatic-brain-injurytbi-follow-up-registry-and-surveillance-of-tbi-in-the-emergencydepartment-ed [Accessed 14 May 2018].
- 21 Fullman N, Yearwood J, Abay SM, et al. Measuring performance on the healthcare access and quality index for 195 countries and territories and selected subnational locations: a systematic analysis from the global burden of disease study 2016. The Lancet 2018;391:2236–71.
- 22 Salomon JA, Haagsma JA, Davis A, *et al*. Disability weights for the global burden of disease 2013 study. *Lancet Glob Health* 2015;3:e712–23.
- 23 Lozano R, Fullman N, Abate D, et al. Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related sustainable development goals for 195 countries and territories: a systematic analysis for the global burden of disease study 2017. *The Lancet* 2018;392:2091–138.
- 24 Sustainable Development Goals. Sustainable development knowledge platform. Available: https://sustainabledevelopment.un.org/?menu=1300 [Accessed 27 Jul 2019].