326 research outputs found

    Experimental determination of the 6s^2 ^1S_0 -> 5d6s ^3 D_1 magnetic-dipole transition amplitude in atomic ytterbium

    Full text link
    We report on a measurement of the highly forbidden 6s^2 ^1S_0 \to 5d6s ^3 D_1 magnetic-dipole transition in atomic ytterbium using the Stark-interference technique. This amplitude is important in interpreting a future parity nonconservation experiment that exploits the same transition. We find ∣∣ = 1.33(6)Stat(20)β×10−4μ0| | ~ = ~ 1.33(6)_{Stat}(20)_{\beta} \times 10^{-4} \mu_0, where the larger uncertainty comes from the previously measured vector transition polarizability β\beta. The M1M1 amplitude is small and should not limit the precision of the parity nonconservation experiment.Comment: 4 pages, 5 figures Paper resubmitted with minor corrections and additions based on comments from referee

    Gamma-ray strength function and pygmy resonance in rare earth nuclei

    Full text link
    The gamma-ray strength function for gamma energies in the 1-7 MeV region has been measured for 161,162-Dy and 171,172-Yb using the (3-He,alpha gamma) reaction. Various models are tested against the observed gamma-ray strength functions. The best description is based on the Kadmenskii, Markushev and Furman E1 model with constant temperature and the Lorentzian M1 model. A gamma-ray bump observed at E_gamma=3 MeV is interpreted as the so-called pygmy resonance, which has also been observed previously in (n,gamma) experiments. The parameters for this resonance have been determined and compared to the available systematics.Comment: 11 pages, including 4 figures and 2 table

    Safe food and feed through an integrated toolbox for mycotoxin management: the MyToolBox approach

    Get PDF
    There is a pressing need to mobilise the wealth of knowledge from the international mycotoxin research conducted over the past 25-30 years, and to perform cutting-edge research where knowledge gaps still exist. This knowledge needs to be integrated into affordable and practical tools for farmers and food processors along the chain in order to reduce the risk of mycotoxin contamination of crops, feed and food. This is the mission of MyToolBox – a four-year project which has received funding from the European Commission. It mobilises a multi-actor partnership (academia, farmers, technology small and medium sized enterprises, food industry and policy stakeholders) to develop novel interventions aimed at achieving a significant reduction in crop losses due to mycotoxin contamination. Besides a field-to-fork approach, MyToolBox also considers safe use options of contaminated batches, such as the efficient production of biofuels. Compared to previous efforts of mycotoxin reduction strategies, the distinguishing feature of MyToolBox is to provide the recommended measures to the end users along the food and feed chain in a web-based MyToolBox platform (e-toolbox). The project focuses on small grain cereals, maize, peanuts and dried figs, applicable to agricultural conditions in the EU and China. Crop losses using existing practices are being compared with crop losses after novel pre-harvest interventions including investigation of genetic resistance to fungal infection, cultural control (e.g. minimum tillage or crop debris treatment), the use of novel biopesticides suitable for organic farming, competitive biocontrol treatment and development of novel modelling approaches to predict mycotoxin contamination. Research into post-harvest measures includes real-time monitoring during storage, innovative sorting of crops using vision-technology, novel milling technology and studying the effects of baking on mycotoxins at an industrial scale

    Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws

    Full text link
    We define a large class of continuous time multifractal random measures and processes with arbitrary log-infinitely divisible exact or asymptotic scaling law. These processes generalize within a unified framework both the recently defined log-normal Multifractal Random Walk (MRW) [Bacry-Delour-Muzy] and the log-Poisson "product of cynlindrical pulses" [Barral-Mandelbrot]. Our construction is based on some ``continuous stochastic multiplication'' from coarse to fine scales that can be seen as a continuous interpolation of discrete multiplicative cascades. We prove the stochastic convergence of the defined processes and study their main statistical properties. The question of genericity (universality) of limit multifractal processes is addressed within this new framework. We finally provide some methods for numerical simulations and discuss some specific examples.Comment: 24 pages, 4 figure

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore