We define a large class of continuous time multifractal random measures and
processes with arbitrary log-infinitely divisible exact or asymptotic scaling
law. These processes generalize within a unified framework both the recently
defined log-normal Multifractal Random Walk (MRW) [Bacry-Delour-Muzy] and the
log-Poisson "product of cynlindrical pulses" [Barral-Mandelbrot]. Our
construction is based on some ``continuous stochastic multiplication'' from
coarse to fine scales that can be seen as a continuous interpolation of
discrete multiplicative cascades. We prove the stochastic convergence of the
defined processes and study their main statistical properties. The question of
genericity (universality) of limit multifractal processes is addressed within
this new framework. We finally provide some methods for numerical simulations
and discuss some specific examples.Comment: 24 pages, 4 figure