180 research outputs found

    Understanding Urban Demand for Wild Meat in Vietnam: Implications for Conservation Actions

    Get PDF
    Vietnam is a significant consumer of wildlife, particularly wild meat, in urban restaurant settings. To meet this demand, poaching of wildlife is widespread, threatening regional and international biodiversity. Previous interventions to tackle illegal and potentially unsustainable consumption of wild meat in Vietnam have generally focused on limiting supply. While critical, they have been impeded by a lack of resources, the presence of increasingly organised criminal networks and corruption. Attention is, therefore, turning to the consumer, but a paucity of research investigating consumer demand for wild meat will impede the creation of effective consumer-centred interventions. Here we used a mixed-methods research approach comprising a hypothetical choice modelling survey and qualitative interviews to explore the drivers of wild meat consumption and consumer preferences among residents of Ho Chi Minh City, Vietnam. Our findings indicate that demand for wild meat is heterogeneous and highly context specific. Wild-sourced, rare, and expensive wild meat-types are eaten by those situated towards the top of the societal hierarchy to convey wealth and status and are commonly consumed in lucrative business contexts. Cheaper, legal and farmed substitutes for wild-sourced meats are also consumed, but typically in more casual consumption or social drinking settings. We explore the implications of our results for current conservation interventions in Vietnam that attempt to tackle illegal and potentially unsustainable trade in and consumption of wild meat and detail how our research informs future consumer-centric conservation actions

    Cosmic ray diffusion near the Bohm limit in the Cassiopeia A supernova remnant

    Get PDF
    Supernova remnants (SNRs) are believed to be the primary location of the acceleration of Galactic cosmic rays, via diffusive shock (Fermi) acceleration. Despite considerable theoretical work the precise details are still unknown, in part because of the difficulty in directly observing nucleons that are accelerated to TeV energies in, and affect the structure of, the SNR shocks. However, for the last ten years, X-ray observatories ASCA, and more recently Chandra, XMM-Newton, and Suzaku have made it possible to image the synchrotron emission at keV energies produced by cosmic-ray electrons accelerated in the SNR shocks. In this article, we describe a spatially-resolved spectroscopic analysis of Chandra observations of the Galactic SNR Cassiopeia A to map the cutoff frequencies of electrons accelerated in the forward shock. We set upper limits on the electron diffusion coefficient and find locations where particles appear to be accelerated nearly as fast as theoretically possible (the Bohm limit).Comment: 18 pages, 5 figures. Accepted for publication in Nature Physics (DOI below), final version available week of August 28, 2006 at http://www.nature.com/nphy

    Purinergic signaling microenvironments: An introduction

    Get PDF
    The common theme of this introductory article and the minireviews that follow in this special issue is the concept of microenvironments within tissues and surrounding cells that would be ideal signaling venues for a biologically active purinergic ligand. Collectively, the editors/authors and the other contributing authors agree that nucleotides and nucleosides would be most potent within a confined system. A talented cadre of purinergics has been solicited to discuss purinergic signaling in his or her favorite microenvironment within a given organ or tissue. We are gratified by the large number of original articles that also have successfully navigated the peer review process and are part of this special issue. These concepts are not simply purinergic, but the idea of maximal potency in a tissue microenvironment and surrounding specialized cells within a tissue pertains to any autacoid or paracrine agonist

    Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in <i>Arabidopsis</i>

    Get PDF
    Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation

    Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    Get PDF
    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks

    Distributed temperature sensing as a down-hole tool in hydrogeology

    Get PDF
    Distributed Temperature Sensing (DTS) technology enables down-hole temperature monitoring to study hydrogeological processes at unprecedentedly high frequency and spatial resolution. DTS has been widely applied in passive mode in site investigations of groundwater flow, in-well flow, and subsurface thermal property estimation. However, recent years have seen the further development of the use of DTS in an active mode (A-DTS) for which heat sources are deployed. A suite of recent studies using A-DTS down-hole in hydrogeological investigations illustrate the wide range of different approaches and creativity in designing methodologies. The purpose of this review is to outline and discuss the various applications and limitations of DTS in down-hole investigations for hydrogeological conditions and aquifer geological properties. To this end, we first review examples where passive DTS has been used to study hydrogeology via down-hole applications. Secondly, we discuss and categorize current A-DTS borehole methods into three types. These are thermal advection tests, hybrid cable flow logging, and heat pulse tests. We explore the various options with regards to cable installation, heating approach, duration, and spatial extent in order to improve their applicability in a range of settings. These determine the extent to which each method is sensitive to thermal properties, vertical in well flow, or natural gradient flow. Our review confirms that the application of DTS has significant advantages over discrete point temperature measurements, particularly in deep wells, and highlights the potential for further method developments in conjunction with other emerging fiber optic based sensors such as Distributed Acoustic Sensing. This article is protected by copyright. All rights reserved

    Early childhood caries in preschool children of Kosovo - a serious public health problem

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Even though it has been widely studied, early childhood caries (ECC) remains a serious public health problem, especially in countries where there is no national program of oral health assessment and no genuine primary oral health care, such as in Kosovo. The purpose of this study was to assess the prevalence of ECC and analyze caries risk factors.</p> <p>Methods</p> <p>The subjects were 1,008 preschool children, selected by stratified random cluster sampling, in the municipality of Prishtina, capital of Kosovo. Data were collected through clinical examination and interviews. Dmft data were recorded according to WHO criteria. Bacterial examination (CRT bacteria test) and plaque test of Greene-Vermillion were used.</p> <p>Results</p> <p>The mean dmft of preschool children was found to be 5.8. The prevalence of ECC was 17.36%, with a mean dmft of 11 ± 3.6. Streptococcus mutans prevalence in ECC children was 98%. A significant correlation between dmft and S mutans counts (≥10<sup>5 </sup>CFU/mL saliva) was demonstrated. A correlation was also found between daily sweets consumption and dmft in children with ECC (<it>P </it>< 0.001). Comparing the dmft of ECC children and duration of bottle feeding showed a statistical correlation (<it>P </it>< 0.001). The mean plaque test was 1.52. None of the examined children had ever used fluoride.</p> <p>Conclusion</p> <p>The prevalence of ECC was high among preschool children in the municipality of Kosovo. We recommend increasing parents' knowledge of proper feeding habits and oral health practices, and increasing preschool children's accessibility to dental services.</p

    Molecular response to aromatase inhibitor treatment in primary breast cancer

    Get PDF
    BackgroundAromatase inhibitors such as anastrozole and letrozole are highly effective suppressants of estrogen synthesis in postmenopausal women and are the most effective endocrine treatments for hormone receptor positive breast cancer in such women. Little is known of the molecular effects of these agents on human breast carcinomas in vivo.MethodsWe randomly assigned primary estrogen receptor positive breast cancer patients to treatment with anastrozole or letrozole for 2 weeks before surgery. Expression profiling using cDNA arrays was conducted on pretreatment and post-treatment biopsies. Sample pairs from 34 patients provided sufficient RNA for analysis.ResultsProfound changes in gene expression were seen with both aromatase inhibitors, including many classical estrogen-dependent genes such as TFF1, CCND1, PDZK1 and AGR2, but also many other genes that are likely to represent secondary responses; decrease in the expression of proliferation-related genes were particularly prominent. Many upregulated genes are involved in extracellular matrix remodelling, including collagens and members of the small leucine-rich proteoglycan family (LUM, DCN, and ASPN). No significant differences were seen between letrozole and anastrozole in terms of molecular effects. The gene changes were integrated into a Global Index of Dependence on Estrogen (GIDE), which enumerates the genes changing by at least twofold with therapy. The GIDE varied markedly between tumours and related significantly to pretreatment levels of HER2 and changes in immunohistochemically detected Ki67.ConclusionOur findings identify the transcriptional signatures associated with aromatase inhibitor treatment of primary breast tumours. Larger datasets using this approach should enable identification of estrogen-dependent molecular changes, which are the determinants of benefit or resistance to endocrine therapy

    Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review

    Get PDF
    Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fi llers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specifi c degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fi bers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specifi c biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed.  The research leading to this work has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS, and from QREN (ON.2 - NORTE-01-0124-FEDER-000016) cofinanced by North Portugal Regional Operational Program (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF)
    corecore