1,436 research outputs found
Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection
Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model
End-stage heart failure in congenitally corrected transposition of the great arteries:a multicentre study
BACKGROUND AND AIMS: For patients with congenitally corrected transposition of the great arteries (ccTGA), factors associated with progression to end-stage congestive heart failure (CHF) remain largely unclear. METHODS: This multicentre, retrospective cohort study included adults with ccTGA seen at a congenital heart disease centre. Clinical data from initial and most recent visits were obtained. The composite primary outcome was mechanical circulatory support, heart transplantation, or death. RESULTS: From 558 patients (48% female, age at first visit 36 ± 14.2 years, median follow-up 8.7 years), the event rate of the primary outcome was 15.4 per 1000 person-years (11 mechanical circulatory support implantations, 12 transplantations, and 52 deaths). Patients experiencing the primary outcome were older and more likely to have a history of atrial arrhythmia. The primary outcome was highest in those with both moderate/severe right ventricular (RV) dysfunction and tricuspid regurgitation (n = 110, 31 events) and uncommon in those with mild/less RV dysfunction and tricuspid regurgitation (n = 181, 13 events, P < .001). Outcomes were not different based on anatomic complexity and history of tricuspid valve surgery or of subpulmonic obstruction. New CHF admission or ventricular arrhythmia was associated with the primary outcome. Individuals who underwent childhood surgery had more adverse outcomes than age- and sex-matched controls. Multivariable Cox regression analysis identified older age, prior CHF admission, and severe RV dysfunction as independent predictors for the primary outcome. CONCLUSIONS: Patients with ccTGA have variable deterioration to end-stage heart failure or death over time, commonly between their fifth and sixth decades. Predictors include arrhythmic and CHF events and severe RV dysfunction but not anatomy or need for tricuspid valve surgery.</p
BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions
Thermogenesis in brown adipose tissue (BAT) is fundamental to energy balance and is also relevant for humans. Bone morphogenetic proteins (BMPs) regulate adipogenesis, and, here, we describe a role for BMP8B in the direct regulation of thermogenesis. BMP8B is induced by nutritional and thermogenic factors in mature BAT, increasing the response to noradrenaline through enhanced p38MAPK/CREB signaling and increased lipase activity. Bmp8b(-/-) mice exhibit impaired thermogenesis and reduced metabolic rate, causing weight gain despite hypophagia. BMP8B is also expressed in the hypothalamus, and Bmp8b(-/-) mice display altered neuropeptide levels and reduced phosphorylation of AMP-activated protein kinase (AMPK), indicating an anorexigenic state. Central BMP8B treatment increased sympathetic activation of BAT, dependent on the status of AMPK in key hypothalamic nuclei. Our results indicate that BMP8B is a thermogenic protein that regulates energy balance in partnership with hypothalamic AMPK. BMP8B may offer a mechanism to specifically increase energy dissipation by BAT
Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends
Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.MCIU - Nvidia(UMA18-FEDERJA-084
Long range superconducting proximity effect in YBa2Cu3O7 La0.7Ca0.3MnO3 weak link arrays
The interplay between ferromagnetism and superconductivity has attracted substantial interest due to its potential for exotic quantum phenomena and advanced electronic devices. Although ferromagnetism and superconductivity are antagonistic phenomena, ferromagnets F can host spin triplet superconductivity induced via proximity with superconductors S . To date, most of the experimental effort has been focused on single S F S junctions. Here, we have found the fingerprints of long range superconducting proximity effect in micrometric weak link arrays, formed by embedding YBa2Cu3O7 superconducting islands in a half metallic ferromagnet La0.7Ca0.3MnO3 film. These arrays show magnetoresistance oscillations that appear at temperatures below the critical temperature of YBa2Cu3O7 for currents below a threshold, indicating their superconducting origin. This realization paves the way for device architectures displaying macroscopic quantum interference effects, which are of interest for field sensing applications, among other
Clinical Risk Score to Predict Pathogenic Genotypes in Patients With Dilated Cardiomyopathy
Background: Although genotyping allows family screening and influences risk-stratification in patients with nonischemic dilated cardiomyopathy (DCM) or isolated left ventricular systolic dysfunction (LVSD), its result is negative in a significant number of patients, limiting its widespread adoption.
Objectives: This study sought to develop and externally validate a score that predicts the probability for a positive genetic test result (G+) in DCM/LVSD.
Methods: Clinical, electrocardiogram, and echocardiographic variables were collected in 1,015 genotyped patients from Spain with DCM/LVSD. Multivariable logistic regression analysis was used to identify variables independently predicting G+, which were summed to create the Madrid Genotype Score. The external validation sample comprised 1,097 genotyped patients from the Maastricht and Trieste registries.
Results: A G+ result was found in 377 (37%) and 289 (26%) patients from the derivation and validation cohorts, respectively. Independent predictors of a G+ result in the derivation cohort were: family history of DCM (OR: 2.29; 95% CI: 1.73-3.04; P < 0.001), low electrocardiogram voltage in peripheral leads (OR: 3.61; 95% CI: 2.38-5.49; P < 0.001), skeletal myopathy (OR: 3.42; 95% CI: 1.60-7.31; P = 0.001), absence of hypertension (OR: 2.28; 95% CI: 1.67-3.13; P < 0.001), and absence of left bundle branch block (OR: 3.58; 95% CI: 2.57-5.01; P < 0.001). A score containing these factors predicted a G+ result, ranging from 3% when all predictors were absent to 79% when â„4 predictors were present. Internal validation provided a C-statistic of 0.74 (95% CI: 0.71-0.77) and a calibration slope of 0.94 (95% CI: 0.80-1.10). The C-statistic in the external validation cohort was 0.74 (95% CI: 0.71-0.78).
Conclusions: The Madrid Genotype Score is an accurate tool to predict a G+ result in DCM/LVSD
Differential Role of Human Choline Kinase α and ÎČ Enzymes in Lipid Metabolism: Implications in Cancer Onset and Treatment
11 pages, 6 figures, 1 table.Background
The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of 1phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKα and ChoKÎČ isoforms, the first one with two different variants of splicing. Recently ChoKα has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKÎČ in carcinogenesis has been reported.
Methodology/Principal Findings
Here we compare the in vitro and in vivo properties of ChoKα1 and ChoKÎČ in lipid metabolism, and their potential role in carcinogenesis. Both ChoKα1 and ChoKÎČ showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKÎČ display an ethanolamine kinase role, ChoKα1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKα1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKÎČ overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKα1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKÎČ mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKα1 than ChoKÎČ.
Conclusion/Significance
This study represents the first evidence of the distinct metabolic role of ChoKα and ChoKÎČ isoforms, suggesting different physiological roles and implications in human carcinogenesis. These findings constitute a step forward in the design of an antitumoral strategy based on ChoK inhibition.This work has been supported by grants to JCL from Comunidad de Madrid (GR-SAL-0821-2004), Ministerio de Ciencia e InnovaciĂłn (SAF2008-03750, RD06/0020/0016), FundaciĂłn Mutua Madrileña, and by a grant to ARM from FundaciĂłn Mutua Madrileña.Peer reviewe
Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC
Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H âÎł Îł, H â Z Zâ â4l and H âW Wâ âlÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of âs = 7 TeV and âs = 8 TeV, corresponding to an integrated luminosity of about 25 fbâ1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
- âŠ