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Abstract

Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force
in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-
linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated
human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to
previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision,
and industrial automation. In this paper, the most relevant advances from the last few years in Artificial
Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are
presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models
and applications within a collection of works presented at the 9" International Conference on the Interplay
between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent
examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life
applications.

Keywords: Explainable Artificial Intelligence; data science; computational approaches; Machine Learning;
Deep Learning; neuroscience; robotics; biomedical applications; computer-aided diagnosis systems.
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1. Introduction

Current research in Artificial Intelligence (AI)
is predominantly focused on addressing the chal-
lenge of explainability in developed models and
algorithms, particularly artificial neural networks.
This emerging trend, referred to as Explainable Ar-
tificial Intelligence (XAI), offers several advantages

such as enhanced confidence in the decision-making
process, improved error analysis capabilities, result
verification, and potential model refinement. XAI
instills safety and trust among users by elucidat-
ing the "how" and "why" of automated decision-
making in diverse applications such as bio-inspired
systems, virtual agents, emotion and affective anal-
ysis, robotics, and medical diagnosis. These advan-
tages will be further explored in this manuscript.

A novel approach within XAI involves inter-
preting the predictions of recently developed Deep
Learning (DL) models using various visualization
techniques[I]. One notable application is in the
medical field, where XAI methods contribute sig-
nificantly to the analysis and classification of mam-
mography images|2], yielding valuable insights.

DL is a generic name that covers an ever-
expanding constellation of computational ap-
proaches that have in common some kind of bio-
logical inspiration and the use of gradient descent-
based learning methods [3]. The DL revolution
started quietly in the 1990s with the first proposed
Convolutional Neural Networks (CNN) [4], but its
adoption exploded around 2010, growing exponen-
tially afterwards into a myriad of architectures and
applications [5, 6, [7, 8, @]. In essence, DL ap-
proaches are data-driven and therefore conditioned
to the available data. Generative approaches [10]
try to overcome this limitation by producing syn-
thetic samples by exciting a generative model with
noise.

Bio-inspired computing methods have continued
to see a steady expansion in recent years. Apart
from the rapid growth of DL based architectures
in Machine Learning (ML), bio-inspired solutions
for search and optimization algorithms are still a
rapidly growing field of research. New methods con-
tinuously appear in the scientific literature that are
inspired by the behavior of animals, plants, social
phenomena, and physical systems. A simple search
in Scopus with the words “bio-inspired” (title, key-
word, abstract) returns more than 21,000 research
papers, with continuous progress since the begin-
ning of the century. Figure [1| shows the percent-
ages of these returned articles, classified by subject
area, indicating a wide variety of applications of
bio-inspired methods, especially in engineering.

These computational approaches have fostered
new areas of interdisciplinary research. For exam-
ple, Affective Computing (AfC) is an emerging re-
search field aimed at developing methods and tools
for emotion recognition, processing, and simula-
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Figure 1: Scopus found articles related to “bio-inspired”
computing methods and classified by subject area.

tion in computer systems [II]. One method that
can focus research on affective computing is its
intersection with ambient intelligence (Aml) and
context-aware systems (CAS) leading to the devel-
opment of Affective Computing and Context Aware-
ness in Ambient Intelligence (AfCAI) [12]. We as-
sume that this goal-oriented yet multidisciplinary
research approach, encompassing Al, computer sci-
ence, biomedical engineering and experimental sci-
ence, will offer more comprehensive solutions in fun-
damental and applied research.

Moreover, the use of virtual agents supporting
human tasks has resulted in more evidence that the
development of social interactions between them
can be automated using computing principles in-
spired by natural processes. For a long time, tech-
nology has been insufficient in developing systems
that relate to human beings in a natural human
way [I3]. However, the current prospects indicate
that through biologically grounded computing prin-
ciples and Al the automation of long term social
and emotional relations between human and virtual
agents can occur. For example, this involves com-
putational modeling of social sowing [14], emotion
recognition [I5] [16] 17, [I8], sentiment analysis [19]
and human attention and performance monitoring
I15, 20, 21, 22].

Needless to say, the application of Al to the field
of robotics is currently very open and wide rang-
ing. Research in this area is carried out from differ-
ent perspectives, ranging from the more hardware-
related aspects of sensing and actuation, which are
necessary to provide the robot with appropriate
sensing data in the correct representation, or to cal-
ibrate and adequately prepare the actuation mech-
anisms, to addressing higher levels of cognition that
aim to make robots fully autonomous through the
construction of specific applications of robotic sys-

tems. Sensing focus more on the application of
various developments in Al in terms of specific al-
gorithms -often based on deep learners and other
modern approaches- to specific sensing or actua-
tion tasks within traditional robotic architectures
[23]. That is, from the sensor viewpoint, it seeks to
facilitate the detection of specific features using a
single sensor, as in vision, or contemplating a mul-
timodal approach as in the integration of different
sensory modalities [24]. On the other hand, from
an actuation perspective, it deals with calibration
and actuation representation issues.

Finally, biomedical and health applications are a
key area in contemporary Al research, where new
devices and Al approaches, techniques or toolkits
are being developed. The main feature of this field
is the degree of interdisciplinary between diverse
professionals. For instance, the application of med-
ical principles joins to design and develop new ap-
proaches or tools that require the conjunction of
engineers, physicians, mathematicians and speech
therapists, among others. Bioinformatics, biome-
chanics, biomaterials, medical devices, and reha-
bilitation engineering are other different fields that
strongly interact with AI within biomedical applica-
tions. These applications allow advancing in health
care diagnosis, monitoring, treatment or even ther-
apy.

The evaluation of brain functions using digital
biomarkers, from imaging technologies, physiologi-
cal fluids, genomics, and Al-based data analytics,
is attracting considerable research interest. These
methods provide powerful decision support tools to-
wards the functional assessment of treatment and
even possible rehabilitation in neurological disor-
ders [25]. For example, Neuroimaging (NI) creates
a large amount of information that can be used to
diagnose a wide range of brain diseases. Despite the
high quality of these images, selecting the appropri-
ate treatment is not a straightforward task because
patients suffering from different pathologies may
present similar structural or functional features and
experience similar symptoms. The emergence of Al
permits the development of powerful tools to ad-
dress this issue, leading to Computer Aided Diag-
nosis (CAD) systems that can assist clinicians in
their decision-making.

The application of techniques to model brain con-
nections as matrices (connectomics) is a promising
avenue for understanding and analysing how our
brain works, but their medical application to assist
in disease and disorder detection is a field that still



needs development. One of the missing elements
for this development is the establishment of a stan-
dard method for calculating connectomes from MRI
data. In the absence of a standard, the analysis
of how different connectome calculation processes,
in combination with computational learning meth-
ods for the diagnosis of, for example, Autism Spec-
trum Disorders, is of particular interest to allow
the possibility of clinical use of these systems [26].
The use of different connectome calculation meth-
ods and several computational learning methods on
the ABIDE dataset [27] are studied separately.

Additionally, the combination of AI and ML
methods with new biomarkers offers more accu-
rate models to diagnose and predict the evolu-
tion of neurological diseases. ML has also proven
its efficiency and effectiveness in analysing differ-
ent types of medical imaging technologies, includ-
ing Magnetic Resonance Imaging (MRI) [28] 29],
Single Photon Emission Computerised Tomogra-
phy (SPECT) [28], X-rays, CT [30], Electroen-
cephalography (EEG) [31], Cardiac magnetic res-
onance (CMR) [32], and so on. In the speed and
accuracy of pattern recognition in other fields, ML
is close or already has exceeded human perfor-
mance, and thus this indicates the great potential
of ML’s widespread application in healthcare and
biomedicine.

To the same end, we are also interested in Al
tools for diagnosing and monitoring subjects with
subtle patterns, such as Mild Cognitive Impairment
(MCI), based on inexpensive, minimally invasive
and easy-to-acquire biomarkers. Thus, we sum-
marise in the following sections a number of Al sys-
tems that automatically analyse cognitive abilities
(memory, planning, constructional praxis, and se-
mantic production) and biological signals, either in
neuropsychological tests or activities of daily life.

With the increased computational power and
connectivity provided by modern devices and facil-
itated by the internet, smart technologies have per-
vaded daily life, especially in areas related to health
and well-being. This allows for large amounts of
data collection and processing. These novel de-
vices usually come to the market as entertainment
tools, such as virtual reality goggles, trackers, cell
phones, and tablets. However, they can be used
not only for gaming but also for rehabilitative func-
tions in a clinical setting. Likewise, the number
of virtual reality devices sold in the last five years
has increased considerably (statistics available at:
https://www.statista.com/). This is a favorable

point for the development of new longitudinal moni-
toring applications based on these new devices. Ap-
plications using virtual reality and several trackers
have begun to stand out in recent years [33] [34].
This presents many opportunities to revolutionize
not only healthcare but also the way it is delivered.

1.1. A summary of the paper

We provide a detailed overview (see Figure [2)) of
some conceptual sessions that have been published
in the aforementioned areas within the 9** Interna-
tional Conference on the Interplay between Natural
and Artificial Computation (IWINAC). Due to the
relevance of the topic, DL models and applications
are summarized in the first section of this paper. In
particular, Section [2] contains some applied contri-
butions in DL, encompassing signal processing; im-
age interpretation in medical, pictorial, and quality
control domains; emotion recognition; and some Al
contributions to the foundations of Deep Reinforce-
ment Learning (DRL) and DL systems explainabil-
ity. We mainly focus on three different aspects:
stacked autoencoders with Multi-Layer Perceptrons
(MLPs) [35], DRL [36], and the explainability of
CNNs by the extraction of propositional rules [37].
In the following section, Section [3] we present a
paradigm for devising new models and theories in
AT as the mere observation of the behavior of bi-
ological systems. Bio-inspired models and systems
are among the most successful methods for tackling
hard combinatorial problems. In certain settings,
effective solutions can only be achieved in an ac-
ceptable amount of time using this approach. This
section includes original applications of these meth-
ods in a broad array of challenging problems in the
fields of scheduling, routing, quantum computing
and protein structure prediction, etc. showcasing
the potential of the field. In this sense, biological
inspiration has reached a stage of maturity that al-
lows exploring issues as diverse as those related to
image processing, group formation under efficiency
criteria and emotion expressed through natural lan-
guage.

The studies available in the area of affective
computing (AfC) cover a broad spectrum of re-
search problems: from the development of appro-
priate methods for collecting emotion information
from subjects, e.g. methods of data visualization
and preprocessing, the evaluation of existing and
development of new ML models, to practical ap-
plications, including the behavior of social agents
in social networks, and the operation of desktop
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robots in hand disease rehabilitation (Section [4).
These studies demonstrated distinct and valuable
approaches to AfC Al-related research. Emotions
are essential in human communication and inter-
action. However, automatic systems for emotion
recognition are still an unachieved objective in AfC.
This section also introduces some applications fo-
cusing on i) EEG for detecting emotions in the brain
and ii) virtual reality (VR) for eliciting and help-
ing to recognize emotions in healthy and mentally
impaired people.

Section [b| explores various applications of Al to
the field of robotics, including hardware-related
sensing and actuation aspects and higher levels of
cognition that aim to make robots completely au-
tonomous. There are two main research perspec-
tives explored: approaches that provide specific al-
gorithms for particular modules within a robotic ar-
chitecture, and approaches that contemplate the ar-
chitecture as a whole and seek the integrated opera-

tion of architectures that can lead robots to be able
to address open-ended learning situations. A spe-
cial focus is dedicated to computer vision, where ar-
tificial neural networks have been used extensively
to process images and have a wide range of applica-
tions. However, there are still challenges to be over-
come, such as reliability issues and lack of adapt-
ability once training is completed. Robotic appli-
cations are also explored, particularly in terms of
autonomy and natural interaction with humans.

Section [6] deals with new applications, devices
or approximations to neurodegenerative, sensorial,
cardiac, or emotional disorders. The section sum-
marizes new neuroprosthetic approaches and mod-
els using EEG for understanding the brain, control-
ling exoskeletons, or detecting stress. Moreover,
several ML applications in this field are assessed
for retinal analysis, breast cancer identification and
electrocardiographic (ECGQ) signal analysis for iden-
tifying different cardiac pathologies.



Finally, Section [7] gives additional details and
insight on one specific (and relevant) biomedical
application field: neuroscience. This field cov-
ers several aspects of signal processing and fusion
techniques, image and bio-electrical modalities and
biomarkers within signal analysis, computer-aided
diagnosis and neurorehabilitation systems, preci-
sion medicine, and so on. The discussion in Sec-
tion 8 contains the results and outcomes of the
present review paper, while conclusions are drawn
in Section [0

2. Explainable Artificial Intelligence in Deep
Learning

XAI is a hot research topic that aims to make
AT systems transparent and trustworthy. Without
explainability, developed methods are incapable of
devising new theories and leading to incremental
science. [2] For instance, a recent review [38] point-
ing to pitfalls and misconducts in the proposals of
new DL approaches may represent this state of af-
fairs.

2.1. Recent Methods

The most commonly used DL architecture is var-
ious types of CNNs, such as the noisy autoencoders
[35], the hybrid with LSTM networks [39], Seq2Seq
architectures [40], and ad-hoc vanilla CNNs [4I].
The application of transfer learning based on pub-
licly available and well-known pre-trained networks
has also become a common first-hand approach to
tackling diverse problems, as well as hybrid systems
composing classical ML (namely Gaussian Mixture
Models) and transfer learning of CNN approaches
[42]. Another salient feature worth noting is the use
of public data for the numerical experiments and
demonstrations, which is a definitive step forward
to open science [43].

In an autoencoder (AE), the input layer is the
same dimensionality as the output layer. Between
these two layers, an arbitrary number of hidden lay-
ers acts as an encoder and a decoder. Generally, the
encoder achieves a transformation of the input to
a higher or lower dimensional space. Subsequently,
the decoder recreates the input data from the en-
coder’s output. Typical AE applications are data
denoising [44 45], dimensionality reduction [46], [47]
and generative models [48] 49]. Here, the authors
of [35] aimed at testing whether a modified version
of Stacked Denoising Autoencoders (SDAE) could
perform better than the regular model.

Unlike supervised learning, reinforcement learn-
ing does not require labelled input/output pairs.
Typically, with this paradigm, an agent interacts
in an unexplored environment to maximize its re-
ward. During learning, a crucial question is the
exploration/exploitation dilemma. Specifically, the
former is about acquiring more information in the
unexplored territory, while the latter is about mak-
ing the best decision given current knowledge in
order to maximize cumulative rewards. Here, the
authors of [36] presented an application based on
the “Montezuma’s Revenge” game [50] in which the
probability of determining a very long sequence of
particular actions using random exploration is ex-
tremely small; thus, requiring methods with more
directed exploration.

The underlying model in reinforcement learning
is a Markov Decision Process (MDP), whose ob-
jective is to maximize the future cumulative re-
ward. With Atari games, each observation was an
RGB image of size (210, 160, 3) where every action
was chosen again for several frames since they are
very similar. In addition, images were converted
to grayscale with a smaller size (84,84). The last
k images represented a single observation, so that
an agent in the game could better understand cru-
cial parameters, such as the direction or speed of
objects in the game [51]. With the use of heuris-
tic data, the authors reached good generalization.
Essentially, they focused on whether the features
of the state were rewarding, instead of focusing on
whether the state was rewarding. Finally, the envi-
ronments used were episodic; their end was trig-
gered by the loss of a life or after winning the
game. The deep neural networks (CNN) were im-
plemented with the reinforcement learning library
called “Coach”.

Before the advent of CNNs, a natural way to ex-
plain MLP classifications was to use propositional
rules [52]. Andrews et al. introduced a taxonomy
describing the general characteristics of all rule ex-
traction methods [563]. Guidotti et al. presented
a survey on black-box models with its “explana-
tors” [64]. Moreover, Vilone et al. review the XAI
domain by clustering the various methods using a
hierarchical classification [55]. Many recent tech-
niques involved learning interpretable patterns in
the local region near a sample [56] [57]. However,
the main drawback of local algorithms is their dif-
ficulty in characterizing a phenomenon in its en-
tirety. Moreover, many other techniques used in
image classification visualize areas are mainly rele-



vant for the outcome [58]. Explainability is a crucial
concern that can be imputed to any trained neural
network architecture. For example, with stacked
AEs, propositional rules were generated in [59]. In
[37], a technique for the rule extraction problem
applied to a CNN architecture was proposed.

The advantage of using deep autoencoders rather
than MLPs with many hidden layers is that the for-
mer can produce more efficient feature representa-
tions than the latter. Nevertheless, the vanishing
gradient problem affects the training through mul-
tiple layers. Therefore a possible approach to avoid
this problem is to stack individually trained layers,
i.e. deep SDAE [60]. Specifically, a small amount
of noise was added to the input vectors; thus, the
weight values of the auto-associative layers were de-
termined by MSE minimization. In addition, a two-
layer stacked DAE was proposed instead of a single-
layer DAE. This approach was applied to four re-
gression problems and three time-series datasets.

2.2. Applications of DL with XAI

The key idea behind the rule extraction technique
proposed in [37] is to transfer the feature maps
learned by a CNN to the Discretized Interpretable
Multi-Layer Perceptron (DIMLP) [61]. DIMLPs
are specific MLPs from which propositional rules
are generated, thanks to the precise localization
of discriminative hyperplanes [62]. CNN networks
were trained with the MNIST benchmark dataset of
digits with two convolutional layers. Then, all the
feature maps were transferred to a DIMLP network
that was trained after compression of the maps by
the Discrete Cosine Transform (DCT). In order to
execute the rule extraction algorithm in a reason-
able time, the DCT was only applied to a small
number of low spatial frequencies. Finally, proposi-
tional rules were extracted from the DIMLPs, with
rules showing in the antecedents the amplitudes of
spatial frequencies in the images represented by the
feature maps. Figure [3| represents at the left the
centroid of the samples activating a generated rule
after applying the inverse DCT (belonging to class
“0”). In the middle and on the right are shown two
centroids of two different feature maps linked to the
same rule. It is worth noting that the feature maps
detect some characteristic parts of the number “0”.

The predictive accuracy of the extracted rules
was similar to the original CNN, when the MLP
classifications agreed with the rule classifications
(in about 97% of the testing samples). Thus, re-
placing a CNN network with many DIMLPs trained

on their feature maps was an appropriate approach.
Besides, it was possible to identify the relevant lo-
cations that contributed to the classification and
reasoning behind the model.

Nowadays, DL covers many tasks can be repre-
sented in a way amenable to a computation that
may emulate human reasoning or perception. The
ability to discern among pictorial styles is a subtle
skill [41] that can be mimicked to some degree by
DL architectures. Interestingly, the visualisation of
the confusion incurred by the trained DL classifier,
as shown in Figure [ results in an excellent map
of the relations among pictorial styles. This obser-
vation opens the door to new ways to exploit DL
results. For instance, this new approach would al-
low us to visualise the relation among diverse neu-
rodegenerative diseases on the basis of the confusion
matrices of weak diagnostic tools. Another sub-
tle perception task is the detection of emotions in
speech, i.e. speech emotion recognition (SER) [39],
whose importance will increase as the interaction of
humans and cyber-systems becomes more and more
natural in our lives.

Besides attempting to model the brain, ML, es-
pecially deep artificial neural networks, have been
inspired by the functioning of biological elements
to mimic their properties. Following this princi-
ple, [63] proposes a different approach to contin-
uous learning, a desirable property in neural net-
work models that are not entirely developed nowa-
days. The proposal explores the stability-plasticity
dilemma to avoid losing already learned informa-
tion when dealing with non-stationary distribu-
tions. It is done by altering the learning algorithm
with a new learning rate function in a competitive
learning paradigm. Although the experiments are
performed only on 2-dimensional binary images (as
depicted in Figure , they are promising and set a
research direction for improving the system.

2.8. Application to image and video processing
Although object detection and image segmenta-
tion are among two of the most successful DL ar-
eas of application, their limitations are far from be-
ing solved. The performance of the methods makes
them suitable to work with objects of considerable
size in the images. Even though in many circum-
stances this limitation is not a problem, there are
many cases in which small objects should be de-
tected or segmented. Related to this problem, [64]
proposes a test-time augmentation meta-method in
which a pre-trained semantic segmentation model



Figure 3: A centroid of samples activating a rule after applying the inverse DCT (left) and two centroids of two
different feature maps linked to the same rule (middle and right).

was used to generate high-resolution sub-images in
which the different areas are identified. The final re-
sults are significantly improved although the execu-
tion increases given that the semantic segmentation
method has to be applied several times. Figure [0]
shows an example of image segmentation.

While the small object detection problem is in-
herent to image and video processing, there are oth-
ers created by humans to take advantage of neural
network-based systems. Adversarial attacks are in-
put manipulations designed to cause false predic-
tions in image classification models by adding im-
perceptible perturbations to an image. To defend
against such attacks, [65] proposes a GAN-based
pre-processing methodology. Instead of allowing di-
rect processing of the image ¢, the proposed method
encodes the image into a latent vector z using a pre-
viously trained autoencoder and a GAN to generate
from z another image similar to . If ¢ contains a
malicious perturbation, the pre-process removes it.

Once we can assume that the system is work-
ing correctly, some problems are difficult to define
and, thus, particularly hard to solve. Anomaly de-
tection is one of them because of its dependence
on context. In [66], an object detection method is
used to identify vehicles, track them, and obtain
their trajectories and velocity vectors. The trajec-
tories and velocities are compared with those of the
nearest neighbours to obtain a context for defining
the usual behavior and distance anomalies to that
behavior.

DL is used to solve time- and resource-intensive
problems, and light versions of typical architectures
can help solve real problems in real time. In [67], a
simple yet effective approach is used to measure the
end-to-end (e2e) latency in the live video streaming

pipeline, from when the signal is generated in the
production studios until it is played on the client
device. The method is based on user-centric behav-
ior by looking at the time the content is produced
in the source context and comparing it to the cur-
rent clock time at the playback device. Given a
clock timestamp introduced in the signal at the pro-
duction stage, we rely on an intelligent streaming
latency measurement agent that first detects with
YOLO that mark at the playout device, then uses
optic character recognition (OCR) to convert the
bitmap text in the clock to a string text, and fi-
nally, compares it with the real-time clock in the
machine, providing real-time end to end streaming
latency (see Figure[7)). The method, albeit simple,
allows us to measure the latency of any playout de-
vice, as it does not rely on any in-band signalling
but a human-centric behavior simulated by an in-
telligent measurement agent.

On the other hand, the lack of labelled data is
problematic when applying deep architectures in
many fields. Here, solutions that provide synthetic
data are very useful. One of these fields is sperm
analysis, which has a central role in diagnosing and
treating infertility (see Figure. Traditionally, the
assessment of sperm health was performed by an ex-
pert by viewing the sample through a microscope.
To simplify this task and assist the expert, CASA
(Computer-Assisted Sperm Analysis) systems were
developed. These systems rely on low-level com-
puter vision tasks such as classification, detection
and tracking to analyze sperm health and mobility.
These tasks have been widely addressed in the lit-
erature, with some supervised approaches surpass-
ing the human capacity to solve them. However,
the accuracy of these models have not been directly
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Figure 4: The graph of relations between art styles, induced by the confusion matrix of the best DL architecture
found, mimics the experts opinions and historical records.

Figure 5: Example of neurons adapting to different fig-
ures shapes.

translated into CASA systems. The generation of
synthetic semen samples to tackle the absence of
labelled data is necessary. In [68], a parametric
modeling of spermatozoa is proposed demonstrat-
ing how models trained on synthetic data can be
used on real images with no need for the further
fine-tuning stage.

2.4. Novel applications with miscellaneous tech-
nologies

Of course, DL systems are becoming pervasive in
the most diverse technological chores, from the ba-
sic signal denoising process [35] to the segmentation
of images [69] to the interpretation of radiological
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Figure 6: Example of image segmentation using test-
time augmentation method as described in [64].

images for the identification of specific diseases [70]
(see also Section [7)).

A challenging application is the recognition of
hand-made signatures [40] in historic documents,
which are very noisy due to document conserva-
tion and the diverse conditions of the scanning
process. Historical postcards also constitute noisy
visual data and are very heterogeneous in struc-
ture. Deep image segmentation using already well-
established U-net approaches [69] allows the extrac-
tion of handwritten data for subsequent analysis.
In lane detection for automated driving tasks, the
extensive use of temporal information embedded in



Figure 7: Architecture approach for live streaming la-
tency estimation.

Figure 8: Sample frame of sperm imaging and schematic
zoom of the parts of a normal spermatozoon: Head (a),
middle-piece (b) and tail (c).

encoder-decoder networks allows for increased ro-
bustness and accuracy [71].

Critical industries are also increasingly adopting
DL approaches for quality control. In microelec-
tronics [42], image data augmentation allows train-
ing a robust hybrid system including GMM and
transfer learning of ResNet50 system for feature
extraction. In aeronautics manufacturing, where
thousands of fixation elements must be precisely de-
tected, single-shot detectors have shown great per-
formance [72].

Another field in which ML can be successfully
applied is the prediction of catastrophic events like
landslides. This is a problem traditionally tack-
led with conventional methods, of a deterministic
nature, with a limited number of variables and a
static treatment of these variables. In the first one,
Landslide prediction with ML and time windows
has proven to be a successful alternative for dealing
with geoenvironmental problems. A feature engi-
neering process allowed us to determine the most
influential geological, geomorphological and mete-
orological factors in the occurrence of landslides.
These variables, together with the landslide inven-
tory, form a dataset to train different ML models,
whose evaluation and comparison showed the best
performance of the multilayer perceptron with an
accuracy of 99.6%. The main contribution con-
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sisted of treating precipitation dynamically using
time windows for different periods and determining
the ranges of values of the conditioning factors that,
combined, would trigger a landslide for each time
window [73].
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Figure 9: Susceptibility map selected for 15 day cumu-
lative precipitation using Jenks method.

Furthermore, the use of ML models for the iden-
tification of high landslide-risk areas yielded prob-
ability values that can be represented as multi-
temporal landslide susceptibility maps. The distri-
bution of the values in the different susceptibility
classes is done by comparing equal interval, quan-
tile, and Jenks methods, which allowed us to se-
lect the most appropriate map for each accumu-
lated precipitation (Figure E[) In this way, areas
of maximum risk are identified, as well as specific
locations with the highest probability of landslides.
These products are valuable tools for risk manage-
ment and prevention [67].

3. Bio-Inspired Applications, in general

Bio-inspired Computation (BIC) is a branch of
AT based on behaviors and characteristics of living
beings, particularly the inheritance and behavior of
swarms. Genetic Algorithms (GA) may be consid-
ered the flagship of the kind of algorithms relying
on inheritance and adaptation to the environment,
but other approaches of this type, such as Differen-
tial Evolution (DE) or Genetic Programming (GP),
have a long track of success as well. Furthermore,
swarm algorithms such as Particle Swarm Opti-
mization (PSO), Artificial Bee Colony (ABC) or
Ant Colony Optimization (ACO), among others, in-
troduced new features borrowed from the emergent
behavior of swarms without central control, which
makes them more suited to some problems and able
to adapt to both discrete and combinatorial, single



and multiobjective, or unimodal and multimodal
problems.

The boom in BIC continues to occur in many
cases without a thorough analysis of what is re-
ally new in each new bio-inspired metaheuristic ap-
proach and in comparison to the well-established
and widely used methods of evolutionary compu-
tation and swarm intelligence optimization meth-
ods. Many papers are tailored to show that the
new method performs better than others on a set of
benchmarks or in a particular application by adjust-
ing the defining parameters to those benchmarks
or that application, while the other methods used
in the comparison are adjusted to their standard
values or to values reported by authors in related
applications, as noted in [74]. Thus, researchers in
this field must be self-critical of the rise of these new
solutions, contrasting what is really new and what
is included in other traditional search algorithms
or what novelty a new bio-inspired metaheuristic
brings.

BIC algorithms are considered weak methods
since the only knowledge needed in the problem do-
main is embedded into the fitness function. How-
ever, their flexibility allows the designers to intro-
duce domain knowledge, usually by means of lo-
cal searchers or greedy algorithms, but also with
specific recombination or variation operators, or
even coding schemes that are specific to the prob-
lem. The resulting approaches, termed Memetic
Algorithms (MA), are among the most outstanding
methods for many complex problems.

Nowadays, biological inspiration has reached a
stage of maturity that allows exploring issues as
diverse as those related to image processing, group
formation under efficiency criteria, and emotion ex-
pressed through natural language. In the following
subsections, we summarize several main contribu-
tions in the field and, as pointed out, they include
original applications of bio-inspired algorithms such
as GA, MA, DE, GP or ACO, to a number of indus-
trial and scientific problems of current interest, such
as Quantum Computing, Protein Structure Predic-
tion, Complex Scheduling and Learning Heuristics,
and so on.

3.1. Quantum computing

Quantum Computing (QC) is an emergent tech-
nology with that promises to solve many prob-
lems intractable with classic computational meth-
ods. However, the development and execution of
Quantum Algorithms raises a number of specific
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challenges. One of these problems is distributing
the quantum operations over a given quantum hard-
ware to minimise the risk of decoherence, and satis-
fying a number of constraints imposed by the hard-
ware structure, which is termed the Quantum Cir-
cuit Compilation Problem (QCCP). This is one of
the main issues in QC. This problem was addressed
in [75], where the authors exploit GA to solve the
QCCP derived from the so-called Quantum Ap-
proximation Optimization Algorithm (QAOA) ap-
plied to the MaxCut constraint satisfaction prob-
lem, obtaining competitive results with the state-
of-the-art. Figure [10] illustrates the main steps of

this procedure.
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(a) MaxCut in- (b) Quantum circuit for the MaxCut
stance. instance in Figure [10(a)|

Figure 10: Example of MaxCut instance (a) and one pos-
sible solution over the quantum hardware with 4 qubits
(b left) represented by a quantum circuit (b rigth).
Each binary gate must be executed on adjacent qubits,
for this reason some swap gate (that represented by x
in the extremes) must be inserted.

3.2. Complex scheduling

Companies in any modern industry need sophis-
ticated scheduling systems to meet their production
on time, subject to the best use of human and en-
ergy resources. This fact poses harder and harder
scheduling problems that require innovative solving
methods to reach satisfying solutions. Given the ex-
treme difficulty of most of the new scheduling prob-
lems of industrial interest, bio-inspired approaches
such as swarm and local search algorithms are, in
many cases, the most reasonable choice. A number
of papers from the BICA session deal with schedul-
ing problems arising in different industrial environ-
ments. For example, in [76] the authors propose
an accurate model for virtual resources scheduling
in a cloud, which is based on the quality of service
requirements and pay-per-use basis and solved by
GAs.

In many real-life problems, the duration of the
tasks is uncertain a priori. Therefore a robust



schedule must remain feasible for any actual pro-
cessing time. This fact was considered in [77 [78];
in the first case, uncertainties are modelled by in-
tervals, while in the second the authors propose the
use of fuzzy numbers. In [77], the authors tackle the
classic Job Shop Scheduling (JSP) with makespan
minimization by an ABC algorithm, and in [78],
the confronted problem is Flexible JSP with energy
optimization by means of MAs.

3.3. Protein structure prediction

Protein structure prediction (PSP) is a challenge
in bioinformatics, since structure determines pro-
tein function. The authors in [79] analyse the ad-
vantages and drawbacks of a number of PSP strate-
gies, considering the recent DL-based methods of
RoseTTAFold and DeepMind’s AlphaFold2, as well
as energy minimization methods. The latter alter-
native includes an MA based on DE and Rosetta’s
fragment replacement technique for PSP [80] &1].
FigurdId] shows an example of structure prediction
using AlphaFold2.
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Figure 11: AlphaFold2 structure prediction of protein
Q31R69 (Synechococcus elongatus, 116 amino acids)
with two helices and several beta sheets. The more
blue, the greater the confidence in the prediction.

3.4. Learning heuristics

Heuristics for problem-solving are normally de-
fined by humans exploiting the knowledge from ex-
perts in the problem at hand. This is the case,
for example, of scheduling priority rules that are
often applied when the time available to build a
schedule is limited (real-time) or when the prob-
lem is dynamic and tasks must be scheduled on-
line. However, the automatic construction of such
rules may be the best option. This approach is
followed in [82], [83], where the authors exploit GP
to evolve rules for the Travelling Salesman Problem
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(TSP) and the Unrelated Parallel Machine Schedul-
ing Problem, respectively. This is a suitable ap-
proach because scheduling rules are arithmetical
expressions that can be naturally evolved by GP.
Moreover, GP provides a variety of rules, which
may be further used to build ensembles, an ap-
proach considered in [83], where the authors show
that ensembles may produce much better solutions
than single rules at a reasonable cost.

3.5. Educational and social applications

Group formation is an interesting challenge for
several reasons. First, different criteria must be met
according to the group objectives. In the specific
case of group formation of students to improve the
results of the learning process, the accepted general
condition is that the composition in every group
is as heterogeneous as possible. This means that
the greater the difference between individuals in the
group, the greater their learning capacity. On the
other hand, different groups should be as similar as
possible, which means that the smaller the differ-
ences between the different groups, the more overall
learning capacity improves. One possible approach
has been the use of lexical availability techniques, to
consider the level of knowledge of students in differ-
ent specific topics. An interesting alternative is to
consider the metaphor of the behavior of bacteria.
These organisms perform as a population that is
always searching for an optimum condition for sur-
vival. In the particular case of students, the success
criterion, which represents the achievement of aca-
demic goals, is similar to the survival criteria of a
population [84]. Table |1 shows how fitness evolves
when genetic algorithm (GA) and bacteria strate-
gies are used. It can be seen that with bacteria,
solutions are better than when we use genetic algo-
rithms, and the stationary state of the best value is
obtained with a smaller number of iterations.

In recent years, emotions (see Section have
emerged as a relevant topic in the field of social sci-
ences, particularly when emotions can be recovered
from the lexical availability of speakers. The key
reference can be found in [85], explaining the adap-
tive characteristic of emotions and identifying the
eight primary ones. Figure [I12| shows the emotions
wheel in the structural model. Each emotion is as-
sociated with a color. According to the intensity
of an emotion, the corresponding color intensifies.
Emotions are more intense when they approach the
center of the wheel, and they may evolve from a
particular state to a different one. In the figure, we



Iterations GA Bacteria

1 0.524 0.521
200 0.425 0.424
400 0.416 0.418
600 0.416 0.415
800 0.416 0.414
1000 0.415 0.413
1200 0.415 0.411
1400 0.415 0.410
1600 0.414 0.410
1800 0.413 0.410
2000 0.413 0.410

Table 1: Fitness for GA and Bacteria strategies.

can see that, if trust intensifies, then it can turn
into admiration. On the other hand, if trust di-
minishes, it may turn into acceptance. The lexical
availability methodology allows us to recover the
most used vocabulary by a population sharing a
particular context. This proposal is aimed to pre-
dict emotions, grouped in interest centers. Data
collected for the experiments considered eight dif-
ferent countries and a total population of 13,918 in-
dividuals. Once again, the combination of a classic
approach (the lexical availability methodology) and
neural networks allows us to detect emotions in a
specific context or historical reality. The training of
neural networks with these data has permitted us
to predict how emotions can evolve depending on
particular geographical and social parameters. The
central idea is to collect data to describe emotional
states, which is a similar approach to that consid-
ered above, related to students’ learning processes

[86].

4. Interdisciplinary research in Affective

Computing

The use of virtual agents that support human
tasks has increased rapidly in recent years. This
stream of research has evidenced that computing
principles inspired by natural processes can autom-
atize social interactions between virtual agents and
humans. For a long time, technology has been in-
sufficient in developing systems that relate to hu-
man beings in a natural human way [13], but nowa-
days the relationships between human and virtual
agents are feasible. To do so, this involves com-
putational modeling of social sowing [14], emotion

recognition [I5] [16], [I'7, 18], sentiment analysis [19]
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Figure 12: Plutchik Wheel.

and human attention and performance monitoring
15} 20, 21}, 22].

Research in the field of affective computing (AfC)
that is aimed at the development of systems that
recognize, interpret, process or simulate human ef-
fects [87, [88], addresses a number of research ques-
tions:

e How can emotions be classified?

e Which data can be used as a source for infer-
ring emotions?

e How can emotion-related data be collected to
ensure that the prepared dataset covers a vari-
ety of emotions yet has ecological soundness?

e How to prepare emotion prediction models us-
ing ML and statistical methods?

e In which ways and to what extent can emotion-
related information be practically used in com-
puter systems?

Different studies in the area of AfC address only
selected questions, and the answers they offer vary
depending on the multidisciplinary composition of
the research teams, as well as intended specific ap-
plications.

Emotions can be defined as positive or negative
experiences associated with a particular pattern
of physiological activity. Much work has studied



emotions on different physiological variables such
as electroencephalographic (EEG) recordings, since
the brain is considered to be the source of all reac-
tions to any external stimulus [89].

People infer other people’s basic emotions pri-
marily from facial expressions and tone of voice,
whereas a deficiency in this ability would lead to
a misinterpretation of social cues [90]. Dynamic
on-screen stimuli do not evoke in subjects the feel-
ing of “being there”, which is necessary to assess
emotional states. In recent years, the use of dy-
namic avatars for emotional recognition tasks has
become widespread, showing that virtual stimuli
are as valid as classical stimuli for representing emo-
tional states [17].

4.1. A theory for social interactions with virtual
agents

Long-term socio-emotional enduring relations are
addressed in the Attachment Theory (AT) [91, [O2]
and referred to as based on an attachment style
[93, ©4]. Following the AT, the attachment fig-
ure forms the base from which the individual inter-
acts with other persons and the environment, which
determines whether humans will experience a sys-
tem (i.e., a virtual agent) as sensitive, cooperative,
available, and accepting them [95, 96]. Through
computational modeling a secure attachment can
be achieved when the following prerequisites are
achieved:

e Sensitivity and responsivity: flexibility with re-
spect to user and environment.

e Mirroring and emergence of synchrony: user
and virtual agent getting in sync.

e behavioral adaptivity: user and virtual agent
adapting their behavior.

e Empathic understanding and responding: user
and virtual agent showing empathic under-
standing.

Social interactions are highly dynamic, flexible
and adaptive [97] 98] Q9] [T00]. This means that an
intelligent system should model the user’s emotions
and its social and physical environment [I0T] [15].
A system is accurate when it is able to respond
flexibly and with the correct timing to the user. To
do so, the user’s states and processes have to be
monitored in a sensitive manner and analyzed over
time.
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From the side of a virtual agent, mirroring is the
basis for imitation of the user [102], in addition
to synchrony and mimicry [I03]. An agent model
where synchrony between two agents emerged at
different modalities (movements, affective responses
and verbal utterances) was designed in [104]. In
another work, adaptive agent models learned to
synchronize their actions and feelings over time
through a dynamic network-oriented approach, be-
ing visualized through avatars [105]. Learning in-
terpersonal synchrony in two interacting virtual
agents can also be learnt when parameters con-
trol basic reactive error (phase) correction and an-
ticipatory mechanisms [I06]. In [I07] another ap-
proach is described of how interpersonal synchrony
can emerge from nonverbal actions. In Figure a
schematic overview is provided on how social inter-
action in agents can lead to detected interpersonal
synchrony, resulting in behavioral adaptations like
bonding.
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Figure 13: From social interaction to detected interper-
sonal synchrony to behavioral adaptation like bonding.

Interpersonal synchrony dynamically relates to
relationship adaptivity both in the short-term (e.g.,
[108, 109] and long-term, e.g., [I10]. From a neu-
roscientific perspective, such short-term behavioral
adaptivity can be modeled through nonsynaptic
adaptive excitability of states [111 [1T2} 113} [1T4],
whereas long-term behavioral adaptivity can be
modelled through synaptic plasticity [115} [116], as
has been captured by an adaptive agent model
[117].

Finally, one of the most fundamental forms of
mutual understanding is indicated by the notion of
empathy [I18, [I19]. Empathy is the natural pro-
cess of feeling and understanding of somebody else’s
emotional state [I120] and can have different vari-
ations [12I]. Computational social agent models
showing empathic understanding have been previ-
ously developed [122] 123]. Moreover, Wang [124]
designed empathic virtual characters as a crucial



aspect for the use in e-learning.

4.2. Affective Computing with Social Interactions

An important step in AfC research is to collect
a dataset that accurately describes emotions. One
approach is to ask actors to simulate the required
emotion [I6]. Another is to ask users to describe
their current state in response to a prompt from
a mobile application. To overcome this issue, pre-
trained models [I8] can be used to detect strong
emotions based on continuous monitoring of blood
volume pulse, heart rate and accelerometer signals
collected with a smartwatch, indicating when to ask
the person about their current emotional state.

The selection or self-preparation of the dataset
is followed by the analysis of a wide range of sig-
nals [87, [88]. Data visualization methods such as
inter alia are used in exploratory subgroup discov-
ery [125] in the context of team interaction data.
The research —based on the VIKAMINE system
[126]— specifically focuses on four novel visualiza-
tions for the inspection and understanding of sub-
groups, which facilitates the interpretation and as-
sessment of the subgroups and their respective pa-
rameters.

One can also segment data into batches easier to
explore. This approach was used for studying train
drivers’ attention [2I]. As the cab view changes
continuously, the whole view is divided into sectors
that contain different types of objects such as sig-
nals and track surrounding (see Figure [14). This
partitioning facilitates the analysis of the elements
to which attention is drawn while driving, in a vir-
tual environment created with the Unity3D tool

(see Figure [15)).

Figure 14: Quasi-static areas of interest defined for the
train cab view (cf. Figure[[5): regular view (left) and
appearance of the incidental objects (right) [21].

Besides exploratory analyses, the development of
valid emotion prediction models is crucial for AfC
research. In [I9], authors proposed a ML model for
predicting which sentiment a given place causes in
the people attending it. Specifically, they trained
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Figure 15: The train cab view in a virtual environment

[21].

Long Short-Term Memory (LSTM) and Convolu-
tional LSTM (ConvLSTM) on a dataset which in-
cluded different information such as the location
and WiFi status of the link, as well as the tablet
and phone of the person connected to the network.

Proprietary models created by companies from
massive data sets are also available via APIs. Two
models for emotion recognition from facial images
(Microsoft Face API and the Kairos Emotion Anal-
ysis API), are investigated in [16]. The study is
performed using 4 different benchmark datasets,
conveying 8 emotions. Here, ready-to-use software
systems can build blocks enabling highly flexible,
robust, and lightweight frameworks.

Finally, AfC studies include not only fundamen-
tal research but are also directed towards solving
practical problems. In [I4], authors explored the
possibility of automating the “sowing” process, dur-
ing which a social agent behaves like a regular user
to increase its audience before spreading malicious
content on social media. The work developed a
theoretical and computational model based on the
Twitter platform.

The AfC solution may also be a desktop robot
that recommends exercises for the rehabilitation of
hand diseases [15]. Emotions are assessed to iden-
tify possible problems while the care receiver per-
forms the exercise using a MobileNetV1 network
and ad-hoc datasets. Besides, the decision-making
processes are locally performed through Edge Al
technology.

4.2.1. Emotion recognition in EEG

This section addresses the brain signal acqui-
sition using EEG, to classify people’s emotional
states (Emotion Recognition -ER-) in virtual worlds



(see Figure [16).
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Figure 16: EEG and VR at the core of emotion recogni-
tion.

Virtual Reality (VR) enables the study of the
ability to perceive and distinguish between differ-
ent affective facial expressions [127]. This technol-
ogy overcomes traditional desktop screen conditions
in the identification of expressions both in front
and side views for different conditions. However,
this enabling technology requires some kind of pre-
processing to reduce the negative effects of motion
sickness [128] and to identify the main factors that
cause them. To this end, a driving simulator with
multiple experimental countermeasures was devel-
oped and tested on thirteen volunteers. Results
determined the key elements of a normative par-
ticipant to tolerate and overcome the symptoms of
this condition, establishing a series of recommenda-
tions and best practices for further work with VR
technologies.

The performance of ER is conditioned by setting
a proper baseline state. In [I129] the problem of set-
ting up a baseline emotional state before or after the
presentation of emotional stimuli during emotion
induction is studied. The effect of neutral stimuli
and the duration necessary for reaching the base-
line brain activity is assessed by means of spectral
analysis of electroencephalographic signals. Con-
cretely, the brain activity at the beginning, middle
and end of a neutral stimulus is compared with the
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activity at the end of the previously presented emo-
tional stimulus. The results report that 30s of neu-
tral stimulus successfully leads to a baseline state
after the elicitation of emotions with low arousal or
low valence in all brain regions and for all frequency
bands, whereas the doubling of time is necessary for
the regulation of emotional states with high arousal
or high valence levels.

Finally, emotional processing (EP) of ex-
combatants of illegal armed groups is studied as a
means of successful reintegration into society [130].
Determining the links between EP and brain activ-
ity in this population is an open issue due to the
subtle physiological differences observed between
them and civilians. Therefore, a combined ap-
proach with EP psychological assessments and EEG
functional connectivity at the source level (EEG
brain imaging based) that feeds a support vector
machine was proposed. Results showed that it is
possible to differentiate between psychophysiolog-
ical patterns of ex-combatants and controls based
on their EP, a key component to developing new
psychological interventions for this population.

4.2.2. Emotion recognition in real-life applications

Real-life emotion detection is a complex issue, as
it can be affected by user personality, mood, con-
text, and motivation [I31I]. Therefore, there is a
need for appropriate methods to collect, process,
and model emotions.

Regarding the collection of data from respon-
dents’ reports, the results presented in [I8] indi-
cate the usefulness of using pre-trained ML models
to detect when emotion assessment should be trig-
gered. Compared to the quasi-random triggering
method, the proposed method allowed the collec-
tion of 4 — 17% more reports with intense emotions
(cf. Table[2).

Regarding the analysis of affective data, the use-
fulness of data visualization [125] and segmenta-
tion [2I] methods should be pointed out. Tai-
lored visualization of movement and speech data
from team interactions allowed the discovery of
subgroups, and insights into their complexity (cf.
Figure , specifically relating to distinct (excep-
tional) time periods of team interactions, and the
respective social interactions [125]. In turn, the ap-
propriate segmentation of the screen into sub-areas
facilitated analyses of average fixation times in the
train driver’s cab view, allowing the identification
of differences between railway enthusiasts and pro-
fessional train drivers. Also, no differences were



Random Forest

AdaBoost (10s window)

AdaBoost (60s window)

ML model 37%/50%/13% /229 30%/53% 17%/ 175 33%,/51%/15%, 189
Quasi-random  34%/51%/15% /356 29%/50%/21%/173 28%/49%/23% /121
Self-triggered  48% /50% /2% /62 44% /49% %57 28% /61%/11% /36

Table 2: Results of using three ML models to detect intense emotion compared to quasi-random and self-triggered
assessment. Each cell represents the distribution of responses to the question of whether the user experienced an
intense emotion: Yes/No/Don’t know/Total number [I§].

observed between the natural and virtual environ-
ments, which is a strong argument confirming the
realism of the simulation prepared [21].

The analysis of existing models for recognizing
the 8 emotions —anger, contempt, disgust, fear,
joy, sadness, surprise and neutral— from facial ex-
pressions [16] led to the conclusion that accuracy
and the number of emotions recognized by Mi-
crosoft’s API outperformed the other API (cf. Fig-
ure [18). While the analysis carried out in [I9]
showed no major differences between the LSTM and
ConvLSTM models in sentiment analysis associated
with time and place, likely due to the fact that the
data set used is very small and not enough informa-
tion is available. The results are preliminary, but
they lay the basis for further studies, including a
comparison of the multivariate models.

When it comes to applications, the developed
prediction models [14] confirmed that automation
of the social media “sowing” process is feasible.
However, it is challenging due to the need to create
handlers for interactions from the social network,
e.g. when the social agent is mentioned in a mes-
sage. It is also important to consider whether the
“sowing” process is ethical. On the other hand, the
results obtained in [I5], demonstrated the high ac-
curacy of the physical cognitive assistant in mon-
itoring hand gesture exercises, both in gesture de-
tection (97%) and emotion recognition (90%). The
validation of the desktop robot in a nursing home
is proposed to be tested by caregivers and patients
of a daycare center.

5. A golden age of Artificial Intelligence in
Robotics

The application of Al to the field of robotics is
currently very open and wide-ranging. The research
in this field is carried out from hardware-related
sensing (calibration and preparation of actuation
mechanisms) to actuation aspects (robots auton-
omy and specific applications; see Section .
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The first approach can be divided into algorithms
for particular modules within a robotic architec-
ture or tools that contemplate the architecture as
a whole [I32]. The second approach focused on al-
ternatives that address domains and tasks not con-
templated at the design time [I33]. In this case,
the algorithms are not focused on the tasks to be
performed by the sensing system, but on algorithms
to allow the system to acquire these capabilities by
itself in a more grounded and domain-specific man-
ner. This is the case of motivational systems [134]
or contextual memory systems [135].

5.1. Robotic architectures

An example of this approach is presented by
[136], whose work revolves around a complete cog-
nitive architecture: the e-MDB [137]. In particu-
lar, the authors explore the effects of variational-
autoencoder-based representation learning and of
its resultant latent spaces, as well as the decision
processes used for action selection within the e-
MDB architecture, as shown in Figure[I9] A proce-
dure to obtain the world and utility models neces-
sary for deliberative operations from autonomously
produced latent state spaces is proposed. This is
complemented with the tool described in [I38] for
generating reactive policies from these deliberative
structures.

These approaches rely on the reuse of knowl-
edge and learning from interspersed episodic inter-
actions with different domains, which increases ef-
ficiency. This implies some type of lifelong or con-
tinual learning capabilities and contextual knowl-
edge storage [139, 140]. Continual learning tries
to address the stability-plasticity dilemma to avoid
catastrophic forgetting when dealing with non-
stationary distributions of data, which is usually
the case for robotic systems. Lifelong learning, on
the other hand, focuses on the reuse of learned
knowledge to facilitate further learning. In this
line, [63] addresses the problem of continual learn-
ing for unsupervised learning methods. Unlike pre-
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vious works usually focused on supervised or rein-
forcement learning, they proposed a novel approach
based on a continual learning rate function that can
cope with non-stationary distributions by adapting
the model to learn continuously.

5.2. Algorithms

The topics addressed in the second research per-
spective are quite different from those of the first
one introduced at the beginning of this section,
since they are more concrete and focused on spe-
cific Al algorithms, such as deep learning and other
modern approaches [23]. From the sensor’s view-
point, it seeks the detection of specific features us-
ing a single sensor, as in vision, or contemplating a
multimodal approach, as in the integration of dif-
ferent sensory modalities [24]. From an actuation
perspective, it deals with calibration and actuation
representation issues.

Considering the problem of system actuation,
[T41] proposes a calibration scheme for a lower-
limb, motor-imagery-based brain-computer inter-
face (BCI) for controlling an exoskeleton that is
more efficient than previous schemes. It was tested
over real subjects guided to perform motor imagery
with visual feedback in a VR scenario before each
session with the exoskeleton. This approach has the
advantage that VR implies less physical effort and
allows the users to practice the motor imagery men-
tal task. Results confirm that the performance of
the BCI showed clear improvements over baseline
methodologies.

In more traditional robotic settings, it is impor-
tant to provide robots with appropriate sensing and
sensor representation strategies so that posterior
decision processes are appropriately informed. To
this end, [T142] presented a model based on evolu-
tion to solve a spatial task. This consists in locat-
ing the central area between two landmarks in a
rectangular enclosure with the aim of inducing the
agents to identify landmark location, spatial rela-
tion between landmarks, and position relative to
the environment. They compared egocentric and
allocentric frames of reference and found that the
allocentric one led to better performance.

On the other hand, [143] seeks to demonstrate
how the use of depth map cameras has consider-
able advantages compared to laser range measure-
ments. Depth map cameras, as compared to the
single measurement provided by 2D laser systems,
have as many planes as the vertical resolution of
the camera. Thus, the height of objects above the



Figure 18: Accuracy scores for each tested scenario: 2 APIs for facial emotion recognition, 8 emotions, 5 datasets [16].
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Figure 19: Processes involved in the SRL of the e-MDB.

ground can be derived, endowing the system with
the 3D characteristic. To demonstrate these claims,
they run a series of successful experiments of robots
navigating under objects such as bridges.

The aim of Al is to model the real world using
images or videos captured by sensors, assisting in
processing tasks such as traffic or medical images.
In computer vision, there is a growing number of
methods for improving robot sensing by using ar-
tificial neural networks in large-scale data for im-
age processing. The use of Al has also spread to
a wide variety of fields, both in digital data anal-
ysis and in the generation of the same or another
kind of data. We are witnessing how the genera-
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tion of synthetic data is becoming accessible even
to the general public thanks to the various genera-
tive models that have emerged in recent years (VAE
[144], GAN [145], DM [I46]) with the consequent
transformative applications for society. But there
are some problems to be solved. Their reliability,
although increasing, is still deficient when dealing
with small objects. Their training method makes
them susceptible to certain modifications in an im-
age (attacks), which would cause a failure in the
network. Their operating paradigm usually makes
them not adaptable once their training period is
over.

Robotics is an evolving field that, through its
coupling with AI, has exploded in terms of appli-
cations and possibilities. The increasing interest
in using ML and DL has allowed the creation of
autonomous systems that solve problems in differ-
ent fields. All of the new AI developments, when
projected onto the realm of robotics, have led to
evermore ambitious robotic applications, as an ap-
plication focused area. In the following sections, we
explore the relevance of image and video processing
with DL and ML and their applications.

5.8. ML Applications in Robotics

Robotics is an application in which all the de-
velopments need to be tested under different cir-
cumstances and objectives. The application areas
of robotics are quite broad as they imply different



types of robots (aerial, terrestrial, underwater, or
assistive), applications (monitoring, manipulating,
assisting, autonomous operation), and different do-
mains in which these tasks are carried out.

Two examples in the area of monitoring humans
from different types of robots (ground and aerial)
are provided in [I5] and [22]. The former proposes
a physical, cognitive assistant robot that monitors
hand gesture exercises for elderly people or peo-
ple with some kind of hand-related disease. The
cognitive assistant makes use of visual information
on hand posture and incorporates the detection of
the patient’s emotional state during the exercise to
help improve motivation. In the latter, the authors
present a system for the vision-based detection of
three postures of individuals (standing, sitting, and
lying down) from an unmanned aerial vehicle. They
use the MediaPipe Pose Python module, consider-
ing only seven skeleton points and a set of trigono-
metric calculations. The work is evaluated in a
Unity virtual reality (VR) environment that sim-
ulates the monitoring process of an assistant UAV.
The experiments carried out by the authors show
very promising results.

On the other hand, the therapeutic intervention
in children with ASD (aged 6-8 years, who have the
ability to speak and an IQ equal to or higher than
70 [147, [T48]) needs to identify the emotions to be
regulated and to implement a series of emotional
regulation strategies to increase or decrease these
emotions [I49]. As an innovation, the proposed
protocol will include more automatic multimodal
measurements, including electrodermal activity sig-
nals, and video analysis of the emotional state of the
children interacting with the robot to eventually en-
hance the positive effects of robot training. In the
previous designs of robot training with Pivotal Re-
sponse Treatment (PRT) training [147, 148, [150],
more obtrusive cortisol measurements were used to
evaluate the stress levels during training with a so-
cial robot. At the beginning of the session, the child
is offered a choice of game, and all activities are
characterized by a variety of visual elements; the
sessions are recorded for subsequent analysis of the
patient’s behavior in order to synchronize the dif-
ferent behaviors and times of the game with the
data obtained from the GSR sensor.

In addition, appropriate and personalized content
creation in education environments involving chil-
dren with ASD is an important issue in technology
created by specialized user groups, as proposed in
[I51]. The goal of the ROSA toolbox (Figure
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is to make teachers more effective by providing tai-
lored educational plans for children with ASD and
easy progress monitoring. For children with ASD,
the lessons in the toolbox will be tailored to their
unique needs, increase children’s motivation for
learning, and enable children to develop better lan-
guage, social, and communication skills. The robot
will present content tailored to its abilities. The
ROSA toolbox can provide personalized and moti-
vating educational and communicative support, ex-
ploring and exploiting the unique possibilities of a
social robot as an expressive medium and educa-
tional tool for children with ASD.

ROSA Content Creator
Tool for making personalised lessons

ROSA Review
Tool for storing
and reviewing
student progress

ROSA Lessons
Personalised
lessons for each
student

ROSA Repo
Repository of

content ready to
use for lessons

Teachers create lessons
lised to each student
and review progress

&8

Teachers

ROSA Robot Software
Software on robot that
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converted to robot-specific
capabilities
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Figure 20: The ROSA toolbox: a content creator, soft-
ware that runs on the robot for interpreting the lessons,
and a review panel for teachers.

6. Biomedical and Health Applications

When discussing biomedical applications the ar-
eas involved are numerous and diverse. One of the
biomedical areas that have received considerable at-
tention over the last decade is neurodegenerative
disorders, such as Parkinson’s Disease (Parkinson’s
Disease (PD)) [152, [I53] or Alzheimer’s Disease
(Alzheimer’s Disease (AD)) [154), [155] [156]. Indeed,
the number of patients with PD is expected to dou-
ble in twenty years and will triple around 2050.

Studies have also focused on heart attacks and
strokes, which are associated with a frantic and



stressful lifestyle. Mental health is another funda-
mental topic of analysis, where emotional deficits
have been related to mental disorders, like depres-
sion, schizophrenia, or bipolar behavior [I57, [158)].

Cancer is another constant concern in research.
As well as other diseases or conditions such as devel-
opmental dyslexia [I59, [160], autism [I61], 162], or
glaucoma, which causes progressive and irreversible
damage that reduces the vision field of the patient.

New ML algorithms may also be applied to
biomedical data. One of the main diseases that af-
fect the optic nerve is glaucoma, which causes pro-
gressive and irreversible damage that reduces the
vision field of the patient. The thickness of the reti-
nal nerve fiber layer is an indicator of the status and
progression of this illness. A line of research in the
early diagnosis of glaucoma is based on the anal-
ysis of the asymmetry between the morphological
characteristics of both eyes. Automatic methods
for the measurement of the retinal thickness and
the use of classification techniques based on these
characteristics of asymmetry for the early diagnosis
of glaucoma is a promising approximation.

6.1. COVID applications

Rates of depression and anxiety increased by
more than 25 percent in the first year of the
COVID-19 pandemic, adding to the nearly one bil-
lion people who were already affected by a mental
disorder. At the same time, the frailty of health
systems makes it difficult to address the needs of
these patients. Mental health is a lot more than the
absence of illness: it is an intrinsic part of our indi-
vidual and collective health and well-being [163].

During the COVID-19 pandemic, it was impor-
tant to estimate the capacity of the room and
venue for avoiding overcrowding. Having enough
free space to give people the guaranteed distance
is beneficial to prevent the spread of infectious dis-
ease [164]. A novel CNN that automatically counts
crowds based on the environment audio signals is
proposed in the latter reference. The proposed
system is reported to outperform the previous DL
Crowd Counting system on inferring room capacity.
This system provided a good idea to deal with this
problem for future research.

Diagnostic systems based on DL techniques for
the diagnosis of COVID-19 infection were also
highly demanded in the last few years [30]. The
proposed method performs a three-layer wavelet de-
composition of the input image signal to extract
features and calculates wavelet entropy to remove
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redundant features, reduce the dimensionality of
the features, and reduce the space and time costs
required for model training. These extracted fea-
tures are then fed into a feedforward neural net-
work with a hidden layer for classification. They
introduced the Self-adaptive Particle Swarm Op-
timisation Algorithm (SaPSO) as a training algo-
rithm that can explore more solutions while pur-
posefully finding the optimal solution. Their ex-
periments were based on a chest CT image dataset
containing 296 samples (148 from COVID-19 pa-
tients and 148 healthy controls) and achieved an
excellent accuracy of 85.14% =+ 2.74%. Their ap-
proach requires minimal medical expertise and is
of great importance for the future of humankind in
dealing with emerging epidemic diseases.

6.2. Neuroprosthetic applications

Neuroprostheses are emergent devices able to
produce incredible results as Deep Brain Stimula-
tors. Cortical visual prostheses are a subgroup of
visual prostheses which use electrical stimulation of
the occipital cortex to evoke visual perceptions in
profoundly blind people [165], [166] 167]. The stim-
ulation approaches are usually open-loop, mean-
ing that the stimulation is not controlled by any
other factor. However, closed-loop approaches have
shown advantages in many neural prostheses. In
the case of cortical visual prosthesis, the closed-loop
approach can be based on the phase of local field
potentials recorded by the electrodes. Indeed, pre-
vious studies have shown that it is easier to induce
perception through stimulation at certain phases of
brain oscillations.

However, although electrical stimulation is an es-
tablished treatment option for multiple central ner-
vous and peripheral nervous system diseases, its
effects on the tissue and subsequent safety of the
stimulation are not well understood. Therefore, it
is crucial to design stimulation protocols that maxi-
mize therapeutic efficacy while avoiding any poten-
tial tissue damage. Further, the stimulation levels
need to be adjusted regularly to ensure that they
are safe even with the changes to the nerve due to
long-term stimulation. Using the latest advances in
computing capabilities and ML approaches, com-
putational models are needed. Another essential
factor consists in analyzing brain structures in the
medical imaging field. These are challenging prob-
lems due to neurological diseases’ heterogeneity.
Besides, measuring brain changes quantitatively



in neurodevelopmental is crucial to evaluate clin-
ical outcomes correctly. From a computer-vision
perspective, establishing correspondences between
shapes often requires computing similarity mea-
sures that, in most cases, are unavailable.

6.3. FEG analysis and applications

EEG is also a useful tool for many different ap-
plications, including robotics, emotional technolo-
gies [168], [169] (see preceding Section , and per-
ception. Neurorehabilitation has gradually become
one of the most hopeful tools for treating specific
injuries and diseases during the last decade. Sev-
eral studies have shown that conscious movement
effected by patients with mobility difficulties, as-
sisted by a clinical device such as an exoskeleton,
contributes positively to their mobility recovery,
shortening the rehabilitation times and improving
its results. Besides, other studies have hypothesized
that the motor cortex is particularly active during
specific phases of the gait cycle. Decoding lower
limb kinematics from EEG signals is a promising
application.

Mental fatigue is a complex behavior that affects
daily activities as driving, exercising, etc. To iden-
tify this fatigue, EEG may be used. Several au-
tomatic procedures have been provided to support
neurologists in mental fatigue detection episodes
(e.g. sleepy vs normal). ML and DL methods seem
a promising approach in this field.

Finally, neuroaesthetics is the scientific approach
to studying aesthetic perceptions of art, music, or
any other experience that can give rise to aesthetic
judgments. One way to understand the processes
of neuroaesthetics is by studying EEG signals that
are recorded from subjects while they are exposed
to some expression of art, and study how the differ-
ences among such signals correlate to the differences
in their subjective judgments; typically, such stud-
ies are conducted on limited data with purely sta-
tistical signal analysis. Larger data sets and novel
ML-based data analysis are needed.

6.4. ECG processing and classification

ECG processing supports a number of cardiac ap-
plications, such as modeling of electrocardiographic
patterns in health/disease [170], diagnosis of is-
chemia [I71], conduction abnormalities [I72], and
even prediction of cognitive function [I73]. Math-
ematical models are helpful in testing and opti-
mizing ECG algorithms when electrocardiographic
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data are scarce. Traditionally, ECG models are
used to account for rhythm alterations. Nowadays,
ECG models allow the synthesis of 12-lead ECG
morphology patterns associated with ischemia at
different extents. A cardiac model that allows the
generation of heartbeats with ischemic alterations
induced by an occlusion in the right coronary artery
is an example of this emerging field [I71].

ECG processing is also useful in predicting clin-
ical benefits of the cardiac resynchronization ther-
apy (CRT), which is applied in cases of heart failure.
Unfortunately, CRT presents a non-responsive rate
of about 40%. An approach to improve this failure
rate is aimed at making more accurate Left Bundle
Branch Block diagnosis (LBBB), since LBBB pa-
tients are the population that benefits most from
CRT. Recently, much effort has been made in this
area. In this sense, Al may act synergetically
with ECG processing to improve LBBB diagno-
sis. Moreover, explainable DL may reveal rele-
vant ECG features that significantly contribute to
LBBB diagnosis. For instance, convolutional net-
works can be utilized to separate LBBB relying
on clinical criteria, such as strict LBBB, non-strict
LBBB, and non-LBBB. ML and feature engineer-
ing may also contribute to obtaining more accurate
LBBB diagnoses. Under this light, the Vectorcar-
diographic space turns out to produce promising
LBBB biomarkers. In particular, the QRST angle
appears as a sensible LBBB biomarker. Figure [2]]
shows the vectorcardiographic lead y for both a
representative LBBB patient and a healthy subject
(Control). Beneath, their QRS and T loops are
shown, evidencing QRST angles much more promi-
nent in the LBBB patient than in the control. This
angle becomes larger due to the presence of T-waves
and QRS complexes with opposite polarity. The
QRST angles between LBBB and control patients
are summarized for every vectorcardiographic plane
on the left top panel.

Reconstructing attractors of dynamical systems
is another promising field. This approach can be
applied to electrocardiography databases, for ob-
taining the first statistical moments for the em-
bedding dimension vectors and applying statistical
tests to distinguish between normal and patholog-
ical signals. This produces significant differences
that lead to new classification strategies, infer func-
tional states, and establish a new path for process-
ing signals with high embedding dimensions, i.e.,
high computational complexity.

Finally, uniform embedding techniques have lim-
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itations for the reconstruction of the phase space
of nonlinear time series whose dynamics is not
completely known, so new embedding techniques
based on non-uniform methodologies can help in
this problem. This can be applied to electrocardio-
graphy databases. For the uniform reconstruction,
Average Mutual Information can be used to find the
time delay while False Nearest Neighbor and Aver-
age False Neighbor can be used to find the attractor
dimension. Non-uniform embedding provides a bet-
ter quality in the reconstruction of the phase space.

6.5. Bio signal analysis in Neuromotor disorders

Neuromotor disorders might have their causes
on either pre-motor or primary neurons, on bul-
bar midbrain areas, on motor units, or in the
muscular fibers[25]. These disorders, such as PD,
Amyotrophic Lateral Sclerosis (ALS), Huntington’s
Chorea, or Myasthenia Gravis (MG), name the ag-
gregate of symptoms that are the result of the neu-
romotor system affected structures. Most of them
do not have a clear etiology or effective treatment
yet, but some treatments might successfully im-
prove the functional motor capacities and living
conditions of patients. PD is the most prevalent
neuromotor disease among all, quantify its inci-
dence in 15 cases per 100,000, with a prevalence
ranging from 100 to 200 cases per 100,000 [175].
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PD has a major impact on the daily activity be-
havior of patients, resulting in difficulty in walking,
handling objects, resting tremor, facial rigidity, etc.
as well as non-motor symptoms (e.g. cognitive de-
cline, depression, etc.) which are also challenging
PD patients’ ability to lead an independent life [25].

Having this panorama in mind, it is convenient
to evaluate the neuromotor function of PD partic-
ipants. Specifically, the interest lies in measures of
potential changes in the functional behavior of pa-
tients after being submitted to non-invasive stimu-
lation in order to induce more stability in their neu-
romuscular activity in the shortcoming period after.
One type of stimulation consists in the application
of auditory stimuli which might compensate the
lack of endogenous oscillations at the basal ganglia
due to neurodegeneration [I76]. The oscillations in
the basal ganglia of PDPs typically shift down to
frequencies in the beta band, 14 —30 Hz, character-
istic of hypokinetic states or dopamine deficiency,
as well as to < 10 Hz frequencies, associated with
tremor, dystonia and sleep. Neuroacoustical Stimu-
lation (NAS) consisted in the application of binau-
ral beats following the protocol described in [I77],
from the beatings of a pure tone applied to each
ear corresponding to the two-tone frequency differ-
ences. In the two first cases discussed in the section,
NAS used a sinusoidal signal of 154 Hz through the
left ear, and another sinusoid of 168 Hz through the
right ear, which induce a binaural perceived tone of
14 Hz. To analyze the effects of NAS on PDPs in
longitudinal studies, two approaches can be taken.

The first approach [I78] concentrates on the as-
sessment of the effects of NAS on the motor activ-
ity of PD patients with a smart watch while carry-
ing on movement tests consisting of exercises such
as walking a short distance, raising from an arm-
chair, extending and flexing arms and wrists, and so
on. Triaxial accelerometer signals captured tremor
magnitudes in the 3.5 — 7.5 Hz band, tremor en-
durance within the resting periods between exer-
cises, and bradykinesia in the 0.5—3.5 Hz band dur-
ing pronation and supination exercises. The results
from two PDPs (male and female) and five con-
trols (two males, three females) presented different
statistical distributions between PDPs and controls
regarding tremor and bradykinesia during an eight-
week period. The distributions of PDPs produced
higher medians and wider dispersion than their con-
trol counterparts. Although these were preliminary
results and cannot be attributed any statistical sig-
nificance due to the sample size, they constitute



promising advances to be extended in future stud-
ies, as it was put forth during the debate after the
presentation.

The second approach analyzes the results of NAS
on the phonation of the same participants [I79]. In
this case, the vowel sequence [a :— e :— i :— 0 :—
u :] was used as the benchmarking test. Their per-
formance was evaluated on a set of four recording
sessions after NAS, separated by a week between
recordings. The features analyzed were the loga-
rithm of the Vowel Space Area, the Formant Cen-
tralization Ration, the Vowel Articulation Index,
the Second Formant Span, the normalized First and
Second Formant Spans, the modulus of the Normal-
ized Formant Spans, and the Absolute Kinematic
Velocity of the jaw-tongue joint. The male par-
ticipant tests manifested positive evolution on the
Second Formant Span, whereas the female partici-
pant showed positive evolution in all the features,
except in the Normalized First Formant Span. The
male participant showed improvements in the Cep-
stral Peak Prominence and in the tremor on the
EEG-related ¢ band (4 — 8 Hz). The female partic-
ipant showed improvements in the Energy Profile
distribution.

Another research topic is to explore the ef-
fect of active/sham repetitive Transcranial Mag-
netic Stimulation (rTMS) [I80] on hypokinetic
dysarthria in PDPs [I81]. In this case, the phona-
tion features used in the comparative analysis were
the Jitter, Shimmer, Cepstral Peak Prominence,
and the amplitude distributions of the EEG-related
5 (0—4 Hz), ¥ (4—8Hz), o (8—16 Hz), 5 (16 —32
Hz), v (> 32 Hz), and p (8 — 12 Hz) tremor bands,
extracted from a sustained vowel [a:]. The result-
ing features’ densities were compared using the nor-
malized Jensen-Shannon distances with respect to
a set of 16 normative controls of both genders. The
data were extracted from a recording previous to
stimulation and four recordings after stimulation,
spaced in time covering a three-month period. The
results showed a corrective effect in the active stim-
ulated participant across the feature set except for
Shimmer, and positive effects also, although not so
clearly distinguishable in the sham-stimulated par-
ticipant (see Figure . A potential interpretation
pointed to the possible benefits of speech exercises
having also a possible rehabilitative effect on the
sham case.

A fourth study, [I82], reveals the differential
behavior of the amplitude distributions of the
{6,9,c, 8,7, 1} bands from the vocal fold strain
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b) Results from sham rTMS
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Figure 22: Timely evolution of A: sham rTMS case.

tremor, extracted from a sustained vowel [a:] by
comparing their entropy contents on two PDPs (one
male, and one female) with respect to two norma-
tive controls (one male, one female) [I83]. This
preliminary investigation provides some useful early
insights regarding apparent differences between PD
and control participants, in the sense that entropy
showed to be much larger in PDPs with respect to
controls for all the EEG-related bands studied. To
summarize, the session showed a compact structure
on a neat connecting narrative, with four contribu-
tions analyzing the issue of phonation instability
in PD under different but related scopes, including
NAS and rTMS looking forward to rehabilitation.
This was put forward in the discussion, together
with the need of benchmarking databases specifi-
cally designed to accomplish this specific kind of
study at a statistical significance level. The per-
spective of studying phonation instability in rela-
tionship to EEG-related band activity could open
interesting new research lines offering insights on
the indirect estimation of neuromotor activity in
upper motor areas by means of speech and phona-
tion.

7. Artificial Intelligence in Neuroscience

Neuroscience has been one of the most bene-
fited areas from the advances in AI [I84]. The
use of different machine learning algorithms to ex-
plore and discover patterns related to specific neu-
rological conditions, disorders, or diseases consti-
tutes an important added value to traditional meth-
ods. Among the applications being clearly bene-
fited from ML and AI algorithms are those related
to NI and neurophysiological or speech signals.
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Figure 23: Timely evolution of \: active rTMS case.

In the case of NI, Al allows the automatic identi-
fication of patterns linked to a specific disorder and
useful in a differential diagnosis task [I85]. In the
same way, these techniques may provide relevant
exploratory information regarding the development
of the disease and thus, for the personalized treat-
ment towards the paradigm of precision medicine
[186).

A large number of conditions can be monitored
through NI techniques in conjunction with ML ap-
proaches. This includes ailments such as Devel-
opmental Dyslexia, Autism, or Schizophrenia, or
other degenerative conditions such as PD or AD,
which cause cognitive function to decline and never
recover. Moreover, neuronal damage derived from
other circumstances, such as respiratory disorders
that can produce hypoxia, can also be examined
with similar techniques. The primary relevance of
these studies is the worldwide increase in the preva-
lence of neurological disorders, and an early diagno-
sis is crucial to slow the progression of these diseases
[23].

7.1. Al supports NI analysis

Different NI modalities play crucial roles in the
study of neurological disorders. In fact, these non-
invasive techniques provide highly relevant informa-
tion that assists clinicians in diagnostic decisions.
This information is extracted and analyzed in Com-
puter Aided Diagnosis (CAD) systems [187], which
include AI methods in the different stages of the
NI processing pipeline. Registration methods con-
stitute a critical step that may determine further
analyses. These methods are also benefited from
ML methods. For example, the spatial registra-
tion of brain scans to a common reference space
[188], 189] does not only allow direct comparisons
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voxelwise but also increases interclass separation.
With this and similar processing applied, CAD sys-
tems based on ML can more easily identify patterns
that explain how the human brain works and how
it deviates from typical aging trajectories towards
degenerative disease [190].

In the evaluation of patients with dementia, their
brain scans may be significantly altered in terms of
morphology as a result of neurodegeneration and
thus undergo greater changes to their shape dur-
ing the warping process to a normative template
or atlas. Moreover, in the case of PD, FP-CIT
SPECT scans depict dopamine transport concen-
trations that are localized almost exclusively to the
striatum with relatively little activity elsewhere in
the cortex or cerebellum [I91]. On the other hand,
the changes in FP-CIT SPECT scans with a spa-
tial registration that adopted an intensity preserva-
tion strategy are assessed with a novel dimension-
less factor that uses the differences between affine
and non-linear spatial registration in [I88].

When applying the intensity Preservation of the
Amount (PA), areas expanded during the warping
process are correspondingly reduced in intensity.
Similarly, warping with the intensity Preservation
of the Concentration (PC) also lowers mean values
(see Figure . This increases the interclass sepa-
ration between Healthy Controls (HC) and patients
with PD, but at the cost of losing morphological in-
formation [I53].

Intensity preservation
of concentration
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Figure 24: Schema showing the results of a spatial de-
formation when applying either intensity preservation
of the concentration or the intensity preservation of the
amount.

ML and DL techniques can be also used for ex-
ploratory analysis and to determine morphological
differences in brain structures. Leveraging a re-
lationship to morphological analysis and inference
maps is addressed by a DL architecture based on



siamese networks to evaluate functional differences
between brain regions to discern between HC and
PD [190]. In summary, this methodology consists of
the union of two identical neural networks sharing
common weights that are updated simultaneously
through an error back-propagation process. The
key feature of this framework is that the outputs of
both subnetworks (i.e., the embeddings) are com-
pared according to a distance measure that repre-
sents the asymmetry between brain regions. Fig-
ure depicts the architecture of the siamese net-
work proposed.

Embedding

( Leftembedding | Right embedding )

LEFT Network
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Figure 25: Architecture of the siamese network used to
compute the asymmetry between brain regions.

Following this schema, the embeddings extracted
from the outputs of the siamese network are used
as input of a linear Support Vector Machine (SVM)
classifier. Figure[26]includes a two-dimensional rep-
resentation of the embeddings when comparing sub-
jects from HC and PD classes.

7.2. Al supports automatic and early diagno-
sis/prognosis

One of the diseases with the highest number of
proposals for CAD systems is present in PD. These
systems are not only based on image data but also
on clinical information or speech signals. An exam-
ple of these CAD systems is [28], which combines
multiple input data sources that individually would
lead to poor classification rates and high variability.
Nevertheless, on the basis of information extracted
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Figure 26: Projection over the first two dimensions of

the embeddings associated with controls (blue) andPD
(red).

from FP-CIT SPECT and MRI images, this work
preserves the performance of the CAD system and
minimizes its variability.

Although the use of FP-CIT SPECT scans is one
of the most reliable clinical tests for PD, it would
be interesting to detect the disease using other less
expensive alternatives such as MRI. With this in
mind, [I89] proposed the statistical analysis of sig-
nificance maps by means of parametric and non-
parametric approaches. Experimentally, MRI and
FP-CIT SPECT scans from 40 HC and 40 PD par-
ticipants have been compared by means of paramet-
ric maps obtained using the Statistical Parametric
Mapping (SPM) and non-parametric maps using
the Statistical Agnostic Mapping (SAM) [I85].

Another prominent application of ML is the pre-
diction of a disease progression. This provides a
personalized prognostic for a patient result, which
is essential for clinical practice and can be seen
as a prediction of clinical markers over time. For
example, [I92] addresses this for PD using a non-
linear decomposition of FP-CIT SPECT scans and
an unsupervised ML schema. The authors model
the composite variables with SVM to perform two
different tasks: a differential diagnosis (i.e. clas-
sification) and a disease progression analysis (i.e.
regression) using a longitudinal dataset. Whilst
their Isometric Mapping (ISOMAP) approach de-
composes the input dataset into a more uniformly
distributed coordinate space, the results obtained
are related to the intensity in the tails of the stria-
tum. A Principal Component Analysis (PCA) ap-



proximates the asymmetry of the image.

Two works addressed the quest for new biomark-
ers for early diagnosis of PD using speech signals. In
[193], formant measures were combined with Con-
volutional Neural Networks (CNNs). The study
used sustained phonations of the vowel /a/ from
two speech corpora (Patient Voice Analysis dataset
and Saarbriicken Voice Database) to train and test
a CNN. The input was composed of six normalized
formant features, and the CNN had 150,000 train-
able parameters. The best results were obtained
using the eF'1-eF'2 formant feature set for a speech
segment of 1 second and the eF2-eF'3 set for a 2-
second segment.

In [I94], a new architecture based on a CNN with
Auditory Receptive Fields (ARFs) in the convolu-
tional layers was proposed (see Figure . The
input was an 800 x 200 spectrogram based on a 9-
pole adaptive lattice-ladder linear prediction cod-
ing algorithm, calculated for 2-second speech seg-
ments. The ARF-CNN approach was tested on a
small dataset of 6 PD participants and 6 healthy
controls and showed competitive results with hand-
crafted features.
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Figure 27: Architecture of the CNN proposed in [194].

Other disorders can also be tackled with AI. This
is the case of the Smith-Magenis syndrome (SMS), a
rare disease with low prevalence that involves intel-
lectual deficits and motor and speech delay [195].
A study [I96] evaluated the speech and language
abilities of individuals with SMS using subharmonic
components of the voice in the cepstral domain and
found that individuals with SMS have significant
delays in their speech and language development
compared to typically developing peers. AD is also
addressed using speech as a biomarker of the disease
in [197]. The paper presented different rates related
to Automatic Speech Analysis (ASA) as a non-
invasive, preclinical discrimination between healthy
aging and Mild Cognitive Impairment (MCI) with
around 90% accuracy for ASA evaluation of reading

28

tasks.

Inspired by the biological attention mechanism,
[29] proposes a lightweight attention-based CNN
(ConvNet-CA) for discriminating abnormal brains
from healthy brains based on patients’ Magnetic
Resonance Imaging (MRI) scans. Features are first
extracted by convolutional layers and summarised
by max-pooling layers. An efficient channel-wise
attention mechanism is utilized to learn the impor-
tance of each channel in feature maps. This pro-
cess makes the model focus on the features that are
relevant to a given classification task. Compared
to the popular state-of-the-art CNNs, ConvNet-
CA has proved efficient and effective in learning
meaningful features with a shallow network archi-
tecture, achieving a multi-class classification accu-
racy of 94.88% + 3.64%. The model is evaluated on
a dataset with only 197 scans in total, demonstrat-
ing the powerful representation capability and the
model robustness to a small dataset.

Special attention should be given to assessing
MCT [198, [199, [200] since it is considered the stage
between the mental changes that are seen between
normal aging and early stages of dementia. Indeed,
MCT is one of the main indicators of incipient AD
among other neuropsychological diseases [201]. Di-
verse types of tests have already been developed,
such as biological markers, different imaging modal-
ities, and neuropsychological tests [202]. While ef-
fective, biological markers and imaging modalities
are economically expensive, invasive in some cases,
and require time to get a result, making them un-
suitable as a population screening method. On the
other hand, neuropsychological tests have reliabil-
ity comparable to biomarker tests and are cheaper
and quicker to interpret. Classical neuropsycholog-
ical include graphic tests (Rey-Osterrieth Complex
Figure test, Clock test, Trail Making test, etc.)
[203, 204, 205] or tests based on oral production
(categorical verbal fluency test, phonetic produc-
tion test) [206]. They require very few resources for
their application. However, the need for automa-
tion and a more objective assessment are motivat-
ing the development of new paradigms capable of
monitoring daily behavior [207, 208 [209], or defin-
ing interactive applications through virtual reality
[198], 210]. Several tools for diagnosing and treating
MCI that are inexpensive, minimally invasive, and
easy to administer are now reviewed.

One of the best-known methods for detecting
MCT is the Clock Drawing Test (CDT), which is
an easy method for looking for dementia symp-



toms, including those of AD, and is frequently used
along with other screening exams. As stated in Sec-
tion [2] DL architectures have demonstrated their
usefulness in the extraction of visual patterns and
in the classification of image data. Thus, [211] an-
alyzed an automatic system for diagnosing Cogni-
tive Impairment (CI) based on the paper-and-pencil
CDT. Two models are compared, one based on DL
and another on traditional ML. The architecture
of the DL model is a Convolutional Neural Net-
work, whereas the traditional ML model uses Par-
tial Least Squares (PLS) as the feature extraction
method and SVM with a linear kernel to classify the
extracted features. These experiments yielded good
performance based solely on the cognitive test, and
its accuracy is validated by means of an approach
based on resubstitution with upper bound correc-
tion. This demonstrates the effectiveness of ML
methods for CI diagnosis, especially in resource-
poor areas.

Many studies introduce ML and other AI tech-
niques for identifying early cognitive deficits in
adults in general [I98], or for studying the results
of applying these tests in particular [I98], [199] 200].
Even some specialize in particular types of tests,
such as graphic tests (Rey-Osterrieth Complex Fig-
ure test, Clock test, Trail Making test) [203], 204,
205] or tests based on oral production (categori-
cal verbal fluency test, phonetic production test)
[206]. Other works considered the automatic anal-
ysis of the Rey-Osterrieth complex figure (ROCF).
Figure 28] shows two examples of handmade draw-
ings to show the complexity of the problem. [212]
presents a neural network based on a Siamese ar-
chitecture to assess the patient directly from the
ROCF copy drawing. The results are not extraor-
dinary due to the complexity of the problem since
they are trying to diagnose from a single test when
not all variants of MCI are related to the execu-
tive functions assessed by this test. Therefore, in
[213], a more practical approach tries to obtain an
automatic score without entering into the final as-
sessment. This task is also complex because the
final score is the sum of the partial contributions
associated with the ROCF’s different components.
In addition, there is not a large dataset to apply
basic DL techniques, so they propose using Recur-
sive Cortical Networks, which require fewer exam-
ples for training and have given excellent results in
breaking captcha. This is a very early paper, so
only very initial results are reported.

For oral production analysis, [2I4] proposed
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Figure 28: Two ROCF copy drawings.

transfer learning methods that address data
scarcity and involve the least amount of customiza-
tion steps. They analyze language in two sepa-
rate modalities: speech and linguistic information.
For the first modality, they employ audio files,
and for the second one, transcripts are extracted
from the audio files. The proposed methods consist
of feature-based classifiers and pre-trained models
such as ResNet152, HuBERT, BERT, and RoBERTa.
With this, the authors find that transfer learning
approaches outperform conventional classifiers and
the proposed baseline model. In general, they im-
prove important aspects of the process without nec-
essarily editing prepossessing steps, domain knowl-
edge, or transcripts.

The assessment of the cognitive aspect of spa-
tial cognition is the starting point of [2I5]. Spatial
cognition is a function that strongly contributes to
adaptation and can be impaired by brain injury.
Assessment of these impairments is usually run with
paper-and-pencil or behavioral tasks: this paper in-
troduces an enhanced version of the Baking Tray
Task, that generates new data, related to time, se-



quence, and so on. The authors show how Al can
be applied to the assessment of spatial cognition,
indicating that it can effectively analyze these new
data thus leading to a more comprehensive assess-
ment of spatial cognition.

Due to this need for early diagnosis, or at least
for evidence, using a sufficiently inexpensive and
non-invasive method for screening, other types of
techniques are also investigated. These techniques
are not based on neuropsychological tests but on
sensing the human being to detect characteristic
signs or patterns of impairment (or, at least, non-
normality or suspicion of it). We include here work
related to the analysis of physiological signals (such
as EEG [216], wearable biometric devices [217],209],
or even different NI modalities [218] 219, 220, 221]
although we are looking for non-invasive and inex-
peunsive tests), and daily life behavior (such as pat-
terns of activity at home [208] 209] or semantic and
acoustic patterns of speech [222] 223 [224]). [225]
addresses a very impacting pathology: the AD that
is one of the most common forms of dementia. Au-
thors propose to complement medical procedures
for AD diagnosis based on biochemical markers,
medical images, and psychological tests with the
analysis of resting state EEG. It has the advantage
to be an inexpensive and non-invasive technique to
collect information on brain activity. Authors show
how to elaborate these signals to detect AD preco-
ciously.

Finally, there are many problems associated with
working with data taken from different populations
and with different models [226]. One such problem,
for example, is the absence of complete patient data
caused by a wide variety of reasons, which imputa-
tion algorithms can alleviate. [227] work with an in-
complete database of semantic category test scores
(and personal and socio-demographic data) that is
used to assess MCI, and attempt to complete it us-
ing imputation mechanisms that follow two strate-
gies: assuming that these individuals would have
scored poorly if they had taken the test, defining a
ceiling score, and multiple imputation by fully con-
ditional specification. The study concludes that,
although ceiling imputation can be useful when val-
ues are lost in a missing at random situation and
the correlation between values is clear, multiple im-
putation is completely unbiased in all aspects anal-
ysed.
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7.8. Al and Autism Spectrum Disorder technology

Autism Spectrum Disorder (ASD) also benefits
from new technological advances. Finding markers
for autism is one challenge that could be resolved
by technological solutions, to allow objective tests
for diagnosis, classify disease severity, and indicate
prognosis [228] [229]. Moreover, information and
communication technologies (ICTs) lead to an im-
provement in the conditions of support and accom-
paniment of the sufferers [230] 23T, 232, 233]. For
example, an estimated 33% of people with ASD bet-
ter retain information presented through computers
or tablets [234]. Recent work on ASD device devel-
opment, ML, voice recording, and robot-supported
education solutions is the stress-aware pen (ApEn)
[235]. It is shown in Figure[29)), and it is designed to
detect stress-related behaviors by sensing the hand-
writing and hand-holding pressure, especially for
Children with ASD.

Flexiforce Sensor
11 etect hardholchng predass

Figure 29: ApEn: the stress-aware pen.

Two Flexiforce sensors are embedded to detect
pressure through the pen lead and the pen body.
To draw children’s attention to their stress-related
behaviors, three vibration motors and one LED
light are used to provide feedback, as shown in Fig-
ure[30] Further study is expected to personalize the
stress measurement and the feedback mechanisms
of the pen as well as the communication of this
stress to the children and the parents via appropri-
ate machine learning algorithms. It was developed
to study stress-related behaviors in the natural en-
vironment and explore how to enhance everyday
objects for stress detection and regulation. Differ-
ently from the approach with physiological signals,
behavioral data are collected for immediate feed-
back. Although the design focuses on children with
ASD, ApEn can be applied to different scenarios.
Further research will establish the appropriate in-
teraction design and will explore how to make the
pen a connected object to better support stress de-
tection and reduction.
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One important topic in ASD management is
monitoring the person’s state. An acquisition plat-
form especially developed for people with ASD is
presented in [236], which development is reported
in [237,238]. Figure[3I]shows a picture of the differ-
ent devices that make up the platform: a soft wrist-
band to measure heart rate, body temperature, and
motor activity; a system to acquire environmental
stimuli such as luminosity, environmental tempera-
ture, relative humidity, and atmospheric pressure,
and a device with a 360-degree camera that mea-
sures the number of people and optical flow. Fi-
nally, an Android smartphone that manages the
platform shows relevant information in the inter-
face and also acts as a sound analysis sensor. All
the information collected by the platform is stored
in a remote database. The heart rate (HR) val-
ues remain similar in the four groups of activities.
The project explores the correlations of accelerome-
ter values and body temperature with the intensity
of movements, by gross psychomotor tasks, such
as obstacle courses. These values are further cor-
related to the environmental parameters to better
support the engagement and enjoyment of these
special users.

An interesting trend in technology-supported re-
search in ASD is finding digital biomarkers present
in the phonation of people with Autistic Disorder
and intellectual disability, with the purpose of bet-
ter understanding the syndrome and being able to
develop specific tools that contribute to improving
their quality of life [I61] 239]. The mobile App
Biometrophon allows a longitudinal study extract-
ing up to 72 features from each phonation segment,
including perturbation features as jitter, shimmer,
and harmonic noise ratio, as well as a cepstral
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Figure 30: The feedback (left) and feedforward (right) modes of the stress-aware ApEn.
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Figure 31: Picture of the monitoring platform’s devices.

description of the glottal source. The combina-
tion of Physiological Tremor Amplitude, Neurolog-
ical Tremor Frequency Flutter Tremor Amplitude,
and Global Tremor Amplitudes, summarizing mean
square root of tremor in all bands is the beneficial
multimodal combination of phonetic signals. The
tremor features provide information on the pres-
ence of defects, instabilities, or feedback problems
in the neuromotor system linked to the activation
of the musculus vocalis.

The results shown in Figure [32]are based on three
samples from participant M1, corresponding to a
male born in 1973 (48 years old at the time the
recordings took place), who presents an intellectual
disability, psychotic episodes, and epilepsy, with a
CARS of 40 and a DEX of 29, separated on a week
interval. Valid utterances of a sustained [a:] lasting
more than 400 ms were selected from the record-
ings, corresponding to 12 valid segments during
the two first sessions, and 18 valid segments dur-



ing the third session. These estimations were com-
pared with the normalized EDA value recorded by
the wristband E4 using correlation. The study de-
scribed in [239] of sustained vowel utterances from
an ASD participant enables obtaining longitudinal
estimations of vocal fold tremor, potentially associ-
ated with neurological excitement in performing vo-
calization tests. Relative relevant correlations have
been found between NTA and FTA band tremor
and surface skin conductance. The apparently con-
troversial correlation results from the three record-
ing sessions studied pose an important challenge in
determining the valence of increasing neurological
excitement produced during test performance.

7.4. Information Fusion in NI using DL

Combining data obtained by different methods
is one of the most popular applications of DL. In
the field of NI, different data sources can be com-
bined to generate a stylized version to fuse two im-
ages from different sources. In this context, differ-
ent data sources are sometimes available that pro-
vide structural or functional information, which, al-
though they are usually analyzed separately, can be
used together. features extracted from structural
and functional NI to improve classification perfor-
mance in CAD tools.

Thus, it is possible to take advantage of Positron
Emission Tomography (PET), generating a new
image containing structural and functional infor-
mation. For instance, the principles of neural
style transfer to combine MRI and PET informa-
tion, generating a new image containing structural
and functional information [240]. The usefulness
of this method has been evaluated with images
from the Alzheimer Disease Neuroimaging Initia-
tive (ADNI), which is characterized by the impair-
ment of memory and one other superior cognitive
function, which is frequently the language function.
AD is the most common cause of dementia.

Using the combination of the above techniques
generates a new mixed-mode image (Figure .
Images from the ADNI have been used, demonstrat-
ing that using the new mixed mode image outper-
forms the classification accuracy obtained by indi-
vidual MRI or PET images.

7.5. ML for neurophysiological biomarker analysis

In a similar way that ML provides new opportu-
nities in the field of NI processing, the analysis of
neurophysiological signals is also benefited by them.
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Figure 32: Longitudinal evolution of tremor features
and EDA from male participant M1: a) Session S1-
2021.11.19; b) Session S2-2021.11.26, 2021; c¢) Session
S3-2021.12.03.



3 lossg
los: los loss
f | A f A ; AN AR
: A
; = AR (Al ] ]
_FETII’I'Ing! il o g ]
% At A A=t L
| 1) (e [ 1
1 10 11 Al
|g| -|:g-| Igél i %l
GM Density | s L s R
image | 1= 1= 1= =i
L | (5] 12 1z 21
ey ™ | Tea | &
| mixed mode | '
| image |

e i e

Figure 33: Network architecture to generate the mixed
mode image.

One of the most prominent examples is the process-
ing of Electroencephalography (EEG) signals. Neu-
ral oscillations captured by EEG supply relevant in-
formation that helps to unravel the neural mecha-
nisms underlying cognitive events and neural disor-
ders. EEG and Magnetoencephalography (MEG)
methods record these brain fluctuations and pro-
vide priceless insight into both healthy and abnor-
mal brain functioning. In this case, ML techniques
can be used along with classical signal processing
methods to expose complex patterns in multichan-
nel signals such as EEG or MEG. The exploration
of these complex patterns can reveal specific fea-
tures, like a specific neurological disorder, providing
valuable information regarding the biological origin.

This way, the search for brain activity patterns
related to specific disorders such as Developmen-
tal Dyslexia (DD) allowing an objective diagnosis,
has been a challenge. The diagnosis traditionally
lies in behavioral tests which are easily affected by
human’s subjective nature. Premature diagnosis of
DD is difficult work, which makes it possible to ap-
ply personalized treatment tasks to dyslexic infants
in the beginning phases of their development.

Atypical oscillatory sampling could potentially
lead to the phonological impairments characteris-
tic of dyslexia in one or more temporal rhythms;
in this sense, EEG signal measurement can help to
diagnose DD early on. Thus, in [160], a One-Class
Support Vector Machine (OCSVM) is introduced
to select representative channels and bands of EEG
recordings for both dyslexic and control groups.
Based on the selected significant channels, two clas-
sical ML classifiers (K-Nearest Neighbours (KNN)
and SVM) are separately trained to discriminate
subjects with developmental dyslexia from normal
control groups. They reported an average sensitiv-
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ity even higher than the one obtained using tradi-
tional, neuropsychological tests and using objective
data such as EEG.

Some studies take into account the LEEDUCA
project, which carried out a number of EEG ex-
periments on children hearing Amplitude Modu-
lated (AM) noise at different frequencies with the
aim of exploring brain patterns related to the low-
level processing of language, to detect discrepan-
cies in the perception of oscillatory sampling that
might be associated with dyslexia. On the other
hand, there is an important work directed to ex-
plore the neural basis of DD, addressed by study-
ing Cross-Frequency Coupling (CFC) dynamics,
such as Phase-Amplitude Coupling (PAC), follow-
ing previous works using complex network model-
ing of EEG using band coupling [24T]. They apply
a recent emerging approach to infer CFC dynam-
ics, Holo-Hilbert Spectral Analysis (HHSA). This
is the next step in addressing the constraints of the
current PAC approaches. They pursue HHSA on
the above-described EEG database of the LEED-
UCA project. Next, Holo-Hilbert spectra are used
to examine the PAC changes and patterns in DD
(Figure [34). Finally, the discriminative ability of
the spectra is being validated using ML approaches.
These neuronal disorders, such as DD cause, in ad-
dition to variations in PAC as has just been seen,
alterations in connectivity between different brain
areas that can lead to facilitate early diagnosis.
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Figure 34: Average Holo-Hilbert spectrums for the cross-
correlation signals of EEG channel T8 with each other
EEG channel for dyslexic subjects.

A different approach to figuring out differential



patterns for DD relies on the causal relationships
between brain areas, using the same data from the
aforementioned LEEDUCA project [242]. In this
work, the behavior of each EEG channel in the fre-
quency domain was studied, obtaining the analyt-
ical phase by means of the Hilbert transform. Af-
terward, the cause-effect associations between the
channels of each participant were shown by means
of Granger causality, resulting in matrices that re-
flect the interaction between the various parts of the
human brain. Thus, each subject was categorized
as being either in the control group or in the ex-
perimental group. For this purpose, two ensemble
algorithms were analyzed, showing that both can
reach an acceptable classification efficiency in the
delta band (AUC values up to 0.97) by applying
the Gradient Boosting classifier.

This idea of a different connectivity network is
something that can be applied to other conditions,
not just DD. Schizophrenia (SZ) is a brain con-
dition that jeopardizes the health of many peo-
ple worldwide. People with SZ always experience
symptoms, including hallucinations and loss of sync
of thoughts and feelings. Using DL and connec-
tivity capabilities, [32] presents a method to de-
tect SZ from EEG signaling. In this study, the
dataset used for the experiments was provided by
the Institute of Psychiatry and Neurology in War-
saw (Poland). First, EEG signals are split into 25-
second time frames during the preprocessing stage.
Then, in the feature extraction pass, DL and Func-
tional Connectivity Features (FCF) are used con-
currently. The DL model involves a CNN-LSTM
network, and the functional connectivity techniques
include the Synchronization Likelihood (SL), Fuzzy
SL (FSL), and Simplified Interval FSL (SIT2FSL)
type 2 approaches. In this next step, the DL fea-
tures and the characteristics of each functional con-
nectivity are combined using a concatenation layer
and eventually, to further evaluation the perfor-
mance, K-Fold with K = 5 was used in the clas-
sification step. The results show that the proposed
method achieved an accuracy of 99.43%.

EEG signals are therefore useful to model brain
diseases with DD or SZ but also to study the
medium-term consequences of other diseases, such
as respiratory diseases. Sleep apnea syndrome is
one of the prevalent sleep diseases and may af-
fect brain function due to transient breathing losses
that occur during sleep. Accurate identification
and treatment of apnea by physicians can help
guard against its long-term disruptive impact. EEG
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records brain activity from different areas may be
an appropriate method to diagnose this problem.
[243] propose a CAD taking into account the com-
plexity characteristics of EEG. With this aim, EEG
signals of 20 healthy people and 12 apneic patients
who suffered from different types of apnea were de-
composed into six frequency bands (delta, theta,
alpha, sigma, beta, and gamma) by using band-
pass Finite Impulse Response (FIR) filters. Com-
plexity features such as fractals, Lempel-Ziv com-
plexity (LZC), entropies, and the generalized Hurst
exponent, first used to detect sleep apnea from
EEG signals, were extracted from each frequency
band. The Maximum Relevance Minimum Redun-
dancy (mRMR) algorithm was applied to classify
120 features from three EEG channels. Finally, two
popular classifiers, SVM and KNN, were used to
detect sleep apnea. An accuracy of 99.33% was ob-
tained with the SVM classifier, and the generalized
Hurst exponent effectively contributed to apnea de-
tection.

Not only encephalography is relevant in the study
of cognitive processes, but also MRI has been of
great interest in recent years, and proof of this is
the abundant literature that can be found in this
regard. In both cases, these are non-invasive tech-
niques that can help to see how the different cog-
nitive processes that take place at the brain level
are encoded, either on a spatial or temporal scale.
Recently, combinations of different techniques that,
through fusion methods, can combine signals of dif-
ferent natures in a coherent manner are gaining
momentum. On the other hand, the library MV-
PAlab [244] makes a preliminary step to EEG-MRI
data fusion for Representational Similarity Analysis
(RSA) in EEG signals. This idea has been evalu-
ated with a data set from a prerecorded EEG exper-
iment designed to study the differences in priming
between perceptual expectation and selective atten-
tion. The strengths and versatility of this multivari-
ate technique and its potential applications in mul-
timodal data fusion are discussed. The complete
source code is fully integrated into the MVPAlab
toolbox, which increases the wide number of anal-
yses already implemented and the versatility of the
tool.

7.6. Neurorehabilitation

Computer graphics have always sought ways to
make visual information more realistic and acces-
sible to the user. With this objective in mind, its
use in scientific research aims at providing accurate



and high-quality virtual feedback. Indeed, techno-
logical advances have increased the power of proces-
sors and graphics, boosting computing and render-
ing capacity. Likewise, auxiliary technological re-
sources such as motion-tracking devices have been
improving in parallel, creating branches of develop-
ment with a substantial impact on today’s world,
such as VR and other related technologies.

Researchers are currently verifying whether VR
or optical hand tracking modules can be consid-
ered systems capable of monitoring future patients
of neurodegenerative diseases such as PD, AD, and
ALS, among others [245]. The design methodology
is based on an iterative process of development and
improvement of the exercises. Capturing a set of
features related to the locomotor capacity of the
participant’s upper and lower trunk, using two se-
rious games developed for VR, is the main objec-
tive. These features provide as much information
as possible that may allow determining the biomet-
rical characteristics of the user who performs each
of the tasks and detecting small gestures, details,
or patterns [246]. However, VR and, more specif-
ically, the novel metaverse require a high level of
immersion. Part of the immersive process is made
up of the sensations or emotions it provokes in the
player. For this reason, knowledge of how sound
and sight evoke different emotions in the subject
can be considered a top priority for the challenges
ahead.

Other exploratory approaches based on fMRI try
to assess how the brain processes stimuli that are
continuous/discontinuous in an auditory and time
dimension (different musical articulations) and in
a visual and spatial dimension (different presen-
tations of food and paintings) [247]. In particu-
lar, professional musician volunteers are monitored
through the use of fMRI while using a stimuli device
(VisuaStim Digital) for presenting a set of activa-
tion blocks consisting of one image (depicting differ-
ent presentations of food and paintings as shown in
Figure and one musical piece (with either legato
or martellato articulation). They explore coherence
between the two stimuli (the number of elements
shared by the stimuli when the temporal and spa-
tial dimensions are simultaneously confronted).

Moreover, other technologies or devices in this
context have flourished in recent decades, e.g.
robots (see Section. In fact, cognitive assistance
and communication robots are becoming more and
more famous (Nao, Moxie, Milo, etc). Researchers
from all over the world see in these small devices

(] [] [-]

I i e . | I j Oy O j S8

Martellato legoto Spiceato

Figure 35: Different presentations of chocolate corre-
sponding to different music articulations [247].

a communication support system for children with
autism [248]. Indeed, pedagogical rehabilitation of
autistic children through the design of a game using
cyber-physical systems is a reality today. The hy-
pothesis is that the following elements are learned
with the game: directions, distance, color, team-
work, and socialization. Moreover, the scenario
stimulates the three main therapy tasks in cases of
autism: imitation, joint attention, and turn-taking.

The experimentation of all the studies is based
on small exercises that aspire to contrast the previ-
ous hypotheses. For example, hyper-realistic sce-
narios based on medieval games such as archery
and javelin throwing, managing to capture up to
60 different features (see Figure can be prop-
erly designed [245]. Likewise, a questionnaire may
be elaborated taking into account some of the most
important points in the development of VR simu-
lators such as level design, font size, listening to
music while using VR goggles, lighting, and textur-
ing. All these questions were directed to avoid the
symptoms of motion sickness in the participants.
On the other hand, other questions about usabil-
ity, user-friendliness, and entertainment were also
asked of the participants. Finally, the participants
had the opportunity to rate the scenarios with a
Likert scale.
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Figure 36: Representation of movement and gathering
of main indices collected in archery video game.



Three of the exercises that neurologists perform
with Parkinson’s patients in their consultations can
be emulated using VR but in a gamified and funny
way. To carry out this task, three calibration tests,
focusing on biometric values of hands, are devel-
oped [245]. In other contexts, small 3D-printed
non-humanoid mobile robots can be employed for
the design of an educational game scenario. Two
children and one teacher participate in a game
where the robot does not physically interact with
the children [248]. A simple scene is created with
several positions in the shape of hexagonal holes.
Two children take part in the game as the robot op-
erator and the goal setter. The goal setter uses col-
ored hexagrams which s/he puts in the target posi-
tion. The robot operator controls the walking robot
by means of a laptop or a tablet in order to reach
the goal. During the game, the teacher observes
the children’s actions and, if necessary, mentors or
helps them. At the discretion of the teacher, the
two children change roles. The robot can automat-
ically detect the completion of the task (through
the use of a color sensor) and measure time. In the
pilot study, children with high-functioning autism
(ASC) and neurotypical (NT) children participate
in playing the same game.
Medicine

7.7. Precision through — Sensor-based

Technology

Precision Medicine is a relatively new concept
where its core premise is to build a personalized
profile for each individual and provide insights into
diagnosis, management, and treatment accordingly
via the genetic, environmental, and lifestyle char-
acteristics. Smart devices allow for the construc-
tion of such a profile in a real-time scenario and
its subsequent study and analysis. The aim is to
adapt already existing powerful resources widely
employed in other areas such as data mining, on-
tological linking, medical expert systems, and DL,
among others to construct such intricate and spe-
cific profiles. This would allow providing healthcare
solutions that were not feasible to implement some
years ago. This concept has been gaining increas-
ing media attention and brought to the forefront
of political actions such as the Precision Medicine
Initiative [249].

Actigraphy, the tracking of sleep/activity cycles,
plays an important role in the Precision Medicine
setting, as it is a strong predictor of multiple disor-
ders both physical and mental [250]. It has the
potential to provide clinically important insights
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into physical activity, sleep, and circadian variabil-
ity over long periods, particularly since commercial
research-graded devices can record continuous pas-
sive data for months [25I]. Many disorders arise
due to perturbations of the metabolic system re-
sulting from poor or inadequate daily physical ac-
tivity or sleep [252]. Actigraphy is especially suited
to provide insights into physio-mechanical activity
and metabolic disorders through continuous mon-
itoring of biophysical activity and indirect energy
consumption.

Since ancient times it has been a well-known fact
that there exists a relationship between breathing
and heart rate, several forms of meditation and re-
laxation use breathing as a way to control anxi-
ety and reduce heart rate [253]. The vagus nerve
plays a crucial role in controlling digestive, cardio-
vascular, respiratory, urinary, and endocrine func-
tions, among others [250]. It connects the primary
brain complex with the structures responsible for
controlling the intestines and their environment,
and the absorption of food, hormone, and neuro-
transmitter production. Aligned with this sympa-
thovagal activity which may be controlled through
respiration, the work of Posteguillo and Bonomini
[254] proposed a methodology to study the interac-
tion between heart rate variability and normal, fast,
and slow breathing rates. Specifically, they selected
twenty-three young health subjects (34.447.2 years,
12 male, 11 female) submitted to 12 breaths/min
(normal), 20 breaths/min (fast), and 6 breaths/min
(slow). Blood volume pulse was estimated by pho-
toplethysmography with an Empatica E4 and had
to pass a 2-Back test [255]. The results demonstrate
the role of slow breathing as a down-regulator of
emotional states, and that of fast breathing as a
potential up-regulator, helping to understand how
training based on respiratory maneuvers may mod-
ify cognitive load to cope with stressful situations.

Nowadays, implanted cortical visual prostheses
to replicate the perceptual sensation are highly de-
manded [256]. These devices provide visual cues to
blind people so they can navigate their environment
better. The original implant is composed of a sys-
tem of an image acquisition camera, a VR headset,
an eye-tracking system, an intracortical array, and a
stimulus generator to capture the environment and
the transitions between objects. The implant stim-
ulates visual areas to generate phosphene triggers,
which by training can provide the user with a con-
tour map of the objects in view of the camera, by
seeing the actual phosphene-composed map. The



device takes as input visual images and applies al-
gorithmic transformations to the images to map the
different transitions and uses deep brain stimulation
to train the interface between the machine and live
tissue to provide impulses that generate the map.
To study the effects of the visual stimulation and
the perceptual sensations of the implanted system,
a rig for researchers was set up to have a perception
of the device’s workings using an identical setting
except that the cues were visual instead of using
deep brain stimulation. The device takes as input
visual images through the camera and applies algo-
rithmic transformations to the images to map the
different transitions. This new setup was tested on
scenery that would emulate a real setting (see Fig-
ure. A set of tests assessed the mobility and ori-
entation of five volunteers to check on adaptability.
The average walking time in seconds and the num-
ber of collisions were compared between completely
blind participants (with a walking cane) and those
using the simulated prosthetic vision aid. Whereas
the use of the walking cane allowed easy detection
of obstacles by completely blind participants, the
simulated prosthetic vision system required some
adaptation before achieving the same performance
level, which allowed setting up a processing strategy
as the starting point to meet real-time constraints
reconfigurability.

o
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Figure 37: a) Raw image from the camera attached to
the headset. b) Monocular Depth Estimation processed
image. c¢) Augmented Reality using ’ssd-mobilenet-v1’
Object Detection DL model. d) SPV image.
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The possibility of using limited-resolution visual
prostheses to perform everyday tasks was studied
in the work of Waclawczyk et al. [257], to assess
the impact of limited vision restoration, assuming
one-eye implants of low spatial resolution, and lack
of stereoscopic depth perception. The goal was to
quantify the improvements in everyday life activ-
ity. The study determined that the degree to which
the participants can effectively use artificial vision
in everyday life might be the determining factor in
the successful use of visual prostheses. Adaptation
and learning periods are also important aspects to
be considered, the most recommended strategy be-
ing a hierarchical approach from the simplest to the
most complex tasks, such as motion detection, ob-
ject recognition, and navigation.

8. Discussion

8.1. DL

The fact that trained DL systems are black boxes
raises suspicion in users from many application ar-
eas, foremost in medical image interpretation or as-
sisted diagnostic systems. XAI is getting increas-
ingly more attention in order to provide representa-
tions of the working of the said black box that can
be followed by human reasoning in order to justify
decisions made on the basis of DL recommenda-
tions. A preferred representation is that of propo-
sitional rules, while some authors propose expla-
nations in terms of attention mechanisms. Specif-
ically, [37] exploited the discrete cosine transform
(DCT) of the feature maps generated in the hidden
layers in order to extract rule representations of the
functioning of the CNN.

In Section 2] a variant of SDAEs was proposed
to characterize whether greater capabilities of fea-
ture representation can be obtained when two layers
are introduced in the stacking process instead of a
single one. The results showed a reduction of the
computational cost of 15720%. Therefore, a ques-
tion arising in this context is whether with three
layers the performance could still increase in terms
of computational cost and predictive accuracy.

Regarding explainability, propositional rules
were extracted from aggregated DIMLPs that
learned CNN feature maps related to an MNIST
benchmark classification problem. From the rules,
it was found that varying a single antecedent in the
frequency domain impacted several pixel intensities
in the luminosity domain. An important objective



is to determine whether the proposed approach is
also valid for other classification problems.

DRL has shown its power in some quite difficult
problems, such as learning to play the game of Go
or to predict the spatial folding of proteins. An
interesting objective would be to apply explainabil-
ity through symbolic rule extraction to problems in
which the outputs of the deep networks would cor-
respond to actions, which in turn would represent
classifications (e.g. jumping; running; etc.). In this
way, it would be possible to determine at any point
in the reinforcement learning process what knowl-
edge an agent has acquired. However, the critical
issue of reward generation from external agents re-
mains open. How to include a human in the loop
without undesired interference in the learning pro-
cess is more often considered an economical way to
close the reward loop, and it is showing advantages
in specific case demonstrations [36].

8.1.1. Limits and challenges

One of the strong limits of current DL approaches
comes from its dependence on reliable and sound
data. The need of data augmentation techniques
is paramount when data is scarce (i.e. the num-
ber of samples is small relative to the population,
even if each data sample is large, such as it is the
case in medical image applications) [258]. Trans-
ference of data augmentation between domains, for
instance, using image-based data augmentation for
speech signals [39], provides additional resources to
tackle this difficult issue. But even with the help
of data augmentation, there is a strong need for
well-curated and annotated data [259]. Such need
is extensive to DRL applications where the recourse
to simulation is commonplace [260].

An increasingly noted limitation of DL-reported
results is their low level of statistical confidence as-
sessment [261]. For instance, it is very rare that
the authors report results of permutation tests as
in [262, 263], due to the colossal computational re-
quirements. However, as the DL based systems are
pervading all areas of critical decision-making, a
strong requirement for their deployment should be
a thorough confidence analysis [264], and the abil-
ity to pose refutability tests and the exigence of
reproducibility of the results [265].

Very sparse reward problems still represent a ma-
jor challenge in DRL. Here, the problem was solved
by introducing intermediate rewards representing
intuitive heuristics, depending on a particular case.
It would be an advantage if in the future it were
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possible to automatically determine intermediate
rewards or at least for certain classes of problems.

Regarding SDAE a clear challenge for the fu-
ture is to determine whether the use of multi-layer
based design of SDAEs can represent an advantage
in more complex problems in terms of augmenting
the predictive accuracy.

The approach to rule extraction over feature
map-based CNNs using transfer learning to sim-
pler models is general. However, with many more
convolutional layers and a higher number of ker-
nels, the current technique will take much longer
to run and is unlikely to be usable, unless higher
compression ratios are applied with DCT. Another
approach could be to transfer each feature map to
a single DIMLP network and then aggregate all
DIMLPs into a higher layer. The rules would then
be generated in two successive steps, first from the
aggregation layer and then back to the lower layers
(at the level of the feature maps).

8.2. Bio-Inspired Systems

The objectives in the field are to find the best
combinations of metaheuristics in each fitness land-
scape, as well as to define suitable memetic combi-
nations between metaheuristics with local searches.
These local strategies often incorporate application-
specific knowledge, thus integrating domain knowl-
edge into the global search inherent in population-
based search methods. Papers [78, [79] of the BICA
session present examples of such memetic combina-
tions in two different application areas. Also, the
incorporation of self-adaptation mechanisms in the
defining parameters of a metaheuristic, as opposed
to their experimental adjustment, continues to be
another line of research in this field.

The Bacteria algorithm goes a step further in the
sense that all previous algorithms based on bacte-
ria are focused on bacteria foraging, which is dif-
ferent from bacteria survival. The introduction of
common behavior mechanisms such as conjugation
offers a new field of research with interesting po-
tential. The proposal for predicting emotions start-
ing from a lexicon associated with a specific target
population, which considers geographical and social
parameters, offers a great opportunity to develop
new mechanisms for dealing with emotions. Deal-
ing with the problem of assessing the performance
of the generator of generative adversarial networks,
the authors present a novel approach to reinforce a
proposal of a new metric based on the Fourier spec-



trum. This approach may be used for classification
problems.

Finally, there has also been an effort to use hy-
perheuristics (heuristics to choose heuristics) [266].
The goal of a hyperheuristic is to define a combi-
nation of low-level heuristics to efficiently explore a
search space. The goal in mind with these hyper-
heuristics is that they can tailor the combination
or selection of low-level heuristics to each particular
search space. This goal requires an appropriate and
usually large set of low-level heuristics, as well as
automatically obtaining the selection/combination
mechanisms for them (i.e., by an evolutionary al-
gorithm). But the scope of hyperheuristics also
includes efforts made to automatically define new
heuristics, i.e., applying an evolutionary algorithm
to refine or combine a set of heuristics to obtain
new heuristic strategies optimized for the problem
at hand. In both aspects of hyperheuristic research,
especially in the latter, GP is used primarily be-
cause it provides naturally evolved programs for se-
lection or as new heuristics. [82] 83] includes exam-
ples of this use of hyperheuristics.

These objectives will continue to guide the field
of bio-inspired algorithms, promoting new ideas for
the field itself or for other related fields, and will
undoubtedly continue to be one of the research lines
in the future.

8.2.1. Limits and challenges

In every area of interest, it is necessary to take a
careful point of view. In arapid diffusion (and prob-
ably misunderstanding) of the concepts behind AI,
it is possible to find in non-expert population ex-
pectations that are far from realistic developments.
Al is not a magic concept, though a compilation
of techniques, that usually require the support of
non-artificial disciplines. For example, currently,
there is a global discussion on when an image can
be considered an artistic creation. It is possible to
look at a particular image for which it is possible
to argue if it corresponds to an artificial creation
or a real-world representation. This is the case pre-
sented in [267], which requires metrics for a precise
evaluation, based on Fourier spectrum image anal-
ysis. The use of neural networks is then supported
by an additional metric called CSD (Circular Spec-
trum Distance) to evaluate generative adversarial
network images.

The enormous amount of data in this field re-
quires every day an increasing processing capabil-
ity, in particular, in training and classification pro-
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cesses. Fortunately, these capabilities are quite
achievable today, but it will take a while to confirm
that the approaches under development are proven
useful. This is a challenge for each of the aforemen-
tioned techniques: neural networks, lexical avail-
ability methodology, and bacteria behavior.

8.3. Affective Computing

One of the main current goals regarding VR and
emotion recognition is to reach reliable conclusions
when studying the differences between using vir-
tual humans on a computer screen (desktop VR)
and a head-mounted display (immersive VR). In
this regard, the realism of virtual characters for the
different target participants needs to be studied, es-
pecially when focusing on people with facial emo-
tion recognition deficits. Moreover, a fair compari-
son between VR and augmented reality in emotion-
based scenarios is a hot topic to be exploited in
future research. Furthermore, the relationship be-
tween motion sickness symptoms and VR, as well as
other difficulties that participants may experience
with these new technologies, needs to be further
investigated [268].

Another broad objective is the extraction
and classification of psychophysiological fea-
tures to determine the associations between
brain connectivity and emotional processing
[269]. Any proposal related to emotion induc-
tion/detection /recognition /classification must
rely heavily on ML techniques for the massive
processing and classification of data acquired by a
variety of biosensor types. The use of models based
on support vector machines and neural networks
opens up a wide range of possibilities for improved
detection of physiological, perceptual, and be-
havioral responses, as well as the creation and
implementation of neurocognitive and emotional
rehabilitation therapies. Emphasis should also be
placed on new DL techniques such as CNN, deep
belief networks, and capsular networks, among
others [270].

Apparently, recent research results in the area of
AfC suggest that in order to develop working solu-
tions more vertical than horizontal approaches are
preferred. In fact, AfC research has been more goal-
oriented and application-focused. In this way, con-
straints regarding AfC-based systems appear nat-
urally. For example, in emotion detection, they
might have an impact on the selection of sensors,
signals, types of data, and very often models to



interpret them. As a wide spectrum of emotion-
related signals usually is not available, or cannot
be efficiently analyzed, narrowing it in a proper and
goal-relevant manner might be a key to success.
Another important research objective is the per-
sonalization of models [I8]. Developing general
models does not seem to be practically feasible or
might not even be conceptually possible. As the
personalization of computer systems with the use of
AT methods is an important trend, it also impacts
the development of emotion processing systems.

8.3.1. Limits and challenges

Interest in the evaluation of different physiolog-
ical and biological traits for emotion recognition
has increased markedly in recent times. The mo-
tivation is that emotions elicit a series of measur-
able and quantifiable physiological reactions that,
in contrast to the traditional methods of speech and
facial gestures, cannot be faked or hidden [271]. Ap-
proaches such as those presented in [129] [130] have
used EEG for emotional processing. Actually, inter-
est in brain activity detected from EEG signals has
grown markedly in recent years. EEG elucidates
neural dynamics in different mental conditions in
a simpler and safer way than other NI methods.
As shown in Section 4] EEG recordings are able to
reveal relevant information about brain function-
ing during the mental processes of perception and
recognition.

However, other physiological signals can be used
alone or complementing EEG to cover the range of
terms related to emotion or affect. This would be
possible by processing signals from biosensors that
measure heart rate, electrodermal activity (EDA),
electromyogram and skin temperature, among oth-
ers. In this regard, EDA is an excellent biomarker,
as it is able to capture activation changes very
efficiently [272]. In addition, near-infrared spec-
troscopy (NIRS), an optical method for measuring
changes in the concentration of oxygenated and de-
oxygenated hemoglobin in the microvascular system
of the cortex, is being used to understand neuronal
behavior in the brain. Its use in psychiatry has
grown rapidly because it has better spatial resolu-
tion than EEG and a much lower cost than MRI.
Precisely, one of the most interesting developments
of fNIRS studies in schizophrenia is on emotional
recognition [273].

More than a mere technology, immersive VR is a
growing set of tools and techniques that create the
psychological sensation of being in an alternative
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space, allowing physical immersion in a 3D environ-
ment and interaction with the virtual world as part
of lifelike and authentic experiences [274]. In con-
trast to traditional stimuli based on static images,
VR uses controlled dynamic avatars to represent
different emotional states [275] 276]. In this respect,
dynamic facial expressions represented by avatars
generate an intense emotional experience and facil-
itate successful emotional recognition. Moreover,
avatars may be modeled with any combination of
race, age, and gender, observed from any angle, un-
der any lighting conditions, and in any social con-
text. This enables the simulation of social inter-
actions similar to reality, allowing to control and
manipulation of the behavior of avatars to assess
recognition skills [277].

The number of participants and trials for each
subject is usually limited in research work, which
prevents the results from being representative of the
entire population. In this sense, it appears neces-
sary to conduct experiments with a larger number
of participants. Another major concern has to do
with the correct setup of the experiments. The du-
ration of the experiments, the number of stimuli to
show to each participant, the time needed to induce
a given emotional response, and the time to revert
to a baseline state are just some of the pending is-
sues.

Another typical limitation of current studies on
emotions in the healthcare setting has to do with
therapists’ lack of participation in practical sessions
to evaluate real systems, thus experiencing them
firsthand. In addition, feedback from real patients
is essential for improving emotion induction and
recognition systems [278].

8.4. Robotics

Robotics is an evolving field that through its cou-
pling with AT has exploded in terms of applications
and possibilities. All of the new Al developments,
when projected onto the realm of robotics, have led
to evermore ambitious robotic applications, espe-
cially in terms of the autonomy the robots may dis-
play and their capability to interact in a natural
manner with humans.

Despite the great advances that have been made
in Computer Vision thanks to DL in recent years
and the large number of problems in which unthink-
able results are achieved, current methods are still
very far from extracting the desirable information
from an image or video. Increasing the informa-
tion extraction capacity is a field of work in which



there is still much to be done, whether it be obtain-
ing more information from static images or obtain-
ing better spatiotemporal relationships in moving
images. In addition, the advent of these methods
into practical use in society means that we need to
consider problems arising from exposure to humans
who may want to take advantage of them. Thus,
increasing their reliability and understanding their
trustworthiness is another line of work that will in-
crease.

Robots have been used successfully as interac-
tion mediators in behavioral treatments of autistic
children. [230] [149| 147, 148], where in randomized
controlled trials [147, [I48] and longitudinal studies
[233, [148] have shown that children increased the
communication quality and quantity with their par-
ents and caregivers because of the robot [233] [148].
At present, it is clear that the interaction between
the robot and the person with ASD is not the aim of
the interaction but a middle for care and psychoed-
ucation. Future research will include the addition of
an expanding range of Al-interpreted physiological
signals to improve communication between people
with ASD and caregivers with the mediation of a
robot, as many people with ASD may struggle to
express their levels of stress, pain, and overall emo-
tional state. The robot could be another advanced
modality for behavioral expression and can stimu-
late verbal disclosure [279].

8.4.1. Limits and challenges

In the near future, many of the studies on the
improvement of individual modules such as com-
puter vision sensors, as well as the research on life-
long open-ended learning architectures, will come
to fruition, opening up many new and exciting ap-
plications and creating whole new markets.

DL has diversified by creating different strate-
gies and architectures to face different problems,
but still, the general paradigm is to train a model
on a dataset, freeze the model and then use it. This
learning dynamic does not resemble the biological
functioning artificial neural networks are inspired
by. [63] is a sign that continuous learning strate-
gies have lagged far behind the problems faced by
neural networks today and is a desirable capability
in models so that small changes do not degrade the
results.

Regarding the field of clinical applications, the
lack of standards, large enough databases, and in-
depth multidisciplinary studies on the efficacy of
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the proposals create a barrier between the theo-
retical and the real application. The mandatory
rigor in medical fields implies carrying out exten-
sive studies with specialists in order to find out
whether Als are actually modeling reality correctly.
Such delicate and complex fields as neurology im-
pose the need to work together with medical doctors
and neuroscientists or the models produced will be
of no practical use. In this field, the economic and
personnel limitation to carrying out these studies
are the most important. Until these are solved, it
will remain difficult for academic work to be trans-
lated into a practical benefit for society.

8.5. Biomedical Applications

It is generally believed that AT tools will facilitate
and enhance human abilities and not replace the
work of physicians. Al is ready to support health-
care personnel with a variety of tasks as image anal-
ysis, medical device automation, patient monitor-
ing, etc. A perfect combination of increased com-
puter processing speed or architectures [280], op-
timized data collection procedures and larger data
libraries have enabled rapid development of Al tools
and technology, also within healthcare. There are
different opinions on the most beneficial applica-
tions of AI for healthcare purposes. Forbes stated
in 2018 that the most important areas would be
image analysis, robotic surgery, virtual assistants,
and clinical decision support.

Neuroprosthetics are devices that help or aug-
ment the subject’s own nervous system, in both
forms of input and output. This augmentation of-
ten occurs in the form of electrical stimulation to
overcome the neurological deficiencies that patients
experience. These debilitating conditions can im-
pair hearing, vision, cognitive, sensory, or motor
skills. Movement disorders such as multiple scle-
rosis or Parkinson’s are target applications. The
recent advances in brain-machine interfaces (BMIs)
have shown that a system can be employed where
the subjects’ intended and voluntary goal-directed
wishes (electroencephalogram, EEG) can be stored
and learned when a user “trains” an intelligent con-
troller (an AI). While in its infancy and very ex-
ploratory, this field will be immensely helpful for
patients with neurodegenerative diseases who will
increasingly rely on neuroprostheses.

Intelligent interpretation of data that appears in
the form of either signals, images, or a video can
be a challenging task. Experts in the field have to
discern medical phenomena and on top of that have



to actively learn new content as more research and
information present themselves. There is therefore
a need for Al approximations to be the tool to fill
this demand gap. Computer vision involves the in-
terpretation of images and videos by machines at or
above human-level capabilities including object and
scene recognition. Areas in which computer vision
is making an important impact include image-based
diagnoses. Computer vision has mainly been based
on statistical signal processing but is now shifting
more toward the application of artificial neural net-
works as a learning method. For instance, DL may
be used to engineer computer vision algorithms for
classifying images of lesions in the skin and other
tissues. Video analysis, as well, has great potential
for clinical decision support.

For a successful prognosis of cardiovascular dis-
eases (CVD), an early and quick diagnosis is es-
sential. Heart disease and strokes are the predomi-
nant causes and account for more than 80% of CVD
deaths, whilst one-third of these deaths occur pre-
maturely. Al techniques can radically improve and
optimize CVD diagnosis. Al has the potential to
provide novel tools and techniques to collect and
interpret data and make faster and more accurate
decisions. Al has also improved medical knowledge
by pointing to clinically relevant information from
the voluminous and complex data registered.

8.5.1. Limits and challenges

Wearable health devices are an upcoming tech-
nology that allows for constant measurement of cer-
tain vital signs under various conditions. The key
to their early adoption and success is their appli-
cation flexibility. The users are now able to track
their activity while running, meditating, sleeping,
or when underwater. The goal is to provide indi-
viduals with a sense of power over their own health
by allowing them to analyze the data and manage
their own health. At first look, a wearable device
might look like an ordinary band or watch; however,
these devices bridge the gap between multiple sci-
entific disciplines such as biomedical engineering,
materials science, electronics, computer program-
ming, and data science, among many others. Re-
mote monitoring and picking up on early signs of
disease could be immensely beneficial for those who
suffer from chronic conditions and the elderly. Here,
by wearing a smart device or manual data entry for
a prolonged period, individuals will be able to com-
municate with their physicians without the need of
disrupting their daily lives.
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AT is an enabling technology that when inte-
grated into healthcare applications and smart wear-
able devices can predict the occurrence of health
conditions in users by capturing and analyzing their
health data. The integration of Al and smart wear-
able devices has a range of potential applications in
the area of smart healthcare but there exists a chal-
lenge in the black box operation of decisions made
by Al models that have produced a lack of account-
ability and trust in the decisions made. XAI is a
domain in which techniques are developed to ex-
plain predictions made by AI systems. XAI is a
technique that can be used in the analysis and di-
agnosis of health data by Al-based systems provid-
ing accountability, transparency, result tracing, and
model improvement in the domain of healthcare.

8.6. Neuroscience

In the field of medical imaging, the acquisition of
image data and high-quality labeling data is very
expensive, and the existing medical image data sets
generally have two problems: scarce labeling and
weak labeling, which seriously limit the application
of the algorithm in the production environment.
Therefore, improving the model performance and
robustness on small-sized datasets [29], and arti-
ficially creating data [32], are two main trends in
medical imaging in the future. Solving the problem
caused by the lack of data is beneficial to improving
the generalization of DL to the diagnosis of various
diseases.

On the other hand, it has also been concluded
the enormous usefulness of EEG as data acquisi-
tion, as well as MEG in the form of MRI and others
that can also be of use such as PET. It is interest-
ing to see how some papers propose as a promising
strategy the fusion of data sources, approaching a
multivariate view of the problem that can enrich
the modeling. Such fusion is a challenge, and in
this session, we have seen proposals that can lead
to this joint use. We can then conclude that the
main trends involve the application of techniques
from other scientific fields related to signal to pro-
cess, the modeling of brain connectivity to better
understand the functioning of this organ, and on
the other hand, the taking of multi-source data and
the challenge of merging all this information.

Diagnosing neurological disorders with equivocal
clinical presentations, such as multiple system atro-
phy, progressive supranuclear palsy, dementia with
Lewy bodies, and corticobasal syndrome, is chal-
lenging. To enhance the accuracy of computer-



aided diagnosis (CAD) models for dementia, ap-
proaches like the siamese neural network [190] uti-
lize data transformations for comparisons between
healthy subjects and patients. The preservation of
anatomical brain regions’ shape is emphasized in
works such as [I88], [189], as it significantly influ-
ences CAD system decisions. However, it is crucial
to evaluate brain anatomy and function alterations
comprehensively rather than focusing on individual
regions alone. Image modality selection, prepro-
cessing steps, and image decomposition techniques
[192] provide powerful methods to identify subtle
patterns and enhance the understanding of brain
disorders.

Furthermore, efforts are being made to quantify
the reliability of classification decisions by utilizing
uncertainty measures. Bayesian approaches make
use of uncertainty as a measure of ambiguity of a
classifier decision in order to provide interpretable
solutions. Previous studies have claimed the need
of rejecting a prediction when uncertainty is too
high [281],282], in addition to providing theoretical
computations of uncertainty when used in combina-
tion with deep and ML models. [283] demonstrated
the mathematical equivalence of applying dropout
before every weight layer on a neural network to a
probabilistic deep Gaussian process [284]. Based on
this, [285] developed an uncertainty-driven ensem-
bles of classifiers for image classification, leading
to vital information for the diagnosis of pneumonia
and PD. [286] proposed a more general framework
based on training a logistic regression model on the
classifier outputs to transform them into probabil-
ities. Following their development, recent works
have successfully designed probabilistic intelligent
systems for imaging classification [287, 288, 289].

The scope of NI analysis is to obtain reliable re-
sults at the lowest computational cost. In the last
years, many traditional CAD systems for dementia
have been replaced by more accurate neurological
diseases based on explainable tools that allow a bet-
ter understanding of the pathologies under study
or models that try to use less invasive biomarkers
[290]. In this sense, though the algorithms that
allow the detection of subtle patterns have been
usually based on highly complex DL architectures
[291), 292], further work is needed to reduce the com-
plexity of the implemented models without compro-
mising their reliability. The use of statistical maps
[185 293], and improvements in data preprocessing
are leading to clearer identification of informative
patterns guiding ML model decisions.
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Moreover, the studies presented in this sec-
tion demonstrate the crucial contribution of Al
to understanding non-structured data at behav-
ioral and neural levels. The automation of neuro-
psychological tests and the application of Al in ev-
eryday life activities for MCI assessment offer inex-
pensive, minimally invasive, and easy-to-administer
diagnostic and treatment tools. As data collection
continues to increase, the challenge lies in effectively
combining vast amounts of data to achieve early un-
derstanding and prediction of disabling diseases and
pathological conditions. We imagine assessment as
a network where converging information may deter-
mine a diagnosis.

In the context of neurorehabilitation, it is im-
portant to develop scenarios that gather diverse in-
formation about the locomotor system of partic-
ipants and conduct in-depth research on the col-
lected indicators and their potential for monitoring.
Some promising findings will help tailor biometric
indicators for non-normative participants in future
works with hand-tracking technology. Motion pat-
tern detection, including involuntary tremors, can
be achieved using devices like LMC, which can mon-
itor patients effectively. The activation patterns
observed in the brain for different stimuli suggest
specialization of different areas of the auditory and
visual cortex in processing specific types of articu-
lations. Brain association of different coherent or
incoherent stimuli is hardly differentiated at this
point, but brain activity is greater when coherent
stimuli are used.

Actigraphy tools may be useful in assessing res-
piratory patterns known to have strong influence
in modifying emotional states and cardiovascular
regulation. This specific methodology could bene-
fit from other multi-modal signal acquisition proce-
dures, such as skin conductance and blood pressure,
as well as combine with biofeedback in BCI. The
personalization capabilities of these platforms have
the potential to revolutionize Precision Medicine.
On the other hand, the development of strategies
and scenarios to study the use of visual prostheses
as an actigraphy tool is a complex but rich task,
which may involve spatial concepts, as safest tra-
jectory planning, prevention of falls or injuries from
surrounding obstacles, pattern recognition of com-
mon tools, and helping tools for object handling,
which might also be of use in supporting persons
with neuromotor or cognitive disorders.

In the context of Autism Spectrum Disorder
(ASD), it is crucial to identify the challenges faced



by individuals with ASD and design assistive tech-
nologies that promote inclusivity, and to increase
research towards the adult stage, as most studies
focus on childhood [294]. There are three major
unresolved issues in the field of psychoeducational
intervention and adulthood. First, entry into the
working world requires technologies for training job
skills; Access to housing calls for support through
home automation with domotic devices, cognitive
accessibility of environments, specialized psycholog-
ical and therapeutic support, etc.; and premature
aging requires assistive technologies for health care,
fall prevention, support to internal medicine.

The development of personalized solutions that
accommodate the heterogeneity of ASD conditions
is a current trend. Shortening the validation cy-
cle of technological interventions in the collabora-
tive environment of all involved disciplines is neces-
sary due to the rapid pace of technological advance-
ments. Familiarization with new technologies and
considering sensory profiles are important factors in
designing ASD technologies [295]. Devices used for
ASD should be lightweight, non-intrusive, and min-
imize distractors to ensure user comfort and accep-
tance [296]. Collaboration with specialized behav-
ioral therapists can aid in the familiarization pro-
cess.

Additionally, privacy and confidentiality should
be incorporated into the design of ASD technolo-
gies to ensure the secure handling of physiological
data. The choice of physiological variables, their
longitudinal measurement, and appropriate treat-
ment are areas that require further study and im-
provement to derive meaningful insights from the
collected data [294]..

Overall, the advancements in medical imaging,
CAD models, fusion of data sources, and person-
alized technologies hold immense potential for im-
proving diagnosis, understanding brain disorders,
and developing assistive technologies for various
neurological conditions.

8.6.1. Limits and challenges

One of the main limitations associated with in-
telligent systems is the massive computational bur-
den that they usually entail [297]. This is espe-
cially problematic when handling data with high
dimensionality, such as the three-dimensional im-
ages employed in the diagnosis of brain diseases
[298, [299]. The recent increase in hardware specifi-
cations has partially, but not entirely alleviated this
issue. Future research needs to propose approaches
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that combine data from different sources, includ-
ing additional information to medical imaging, that
strike a balance between performance and compu-
tational load [300L 292]. It is therefore necessary
to continue to improve the efficiency of preprocess-
ing of the data to continue to reduce computational
cost [301]. Specifically, in NI the main limitation for
providing reliable findings is the sample size [302].
Many studies cannot be optimally performed for
this reason, reducing their impact in both technical
and clinical fields.

The other challenge currently is to provide results
that can be easily understood and explained. This
is especially important in the field of NI where re-
search is often conducted in close collaboration with
clinicians. This approach, referred to as XAT [303],
is increasingly being observed in a growing number
of articles [304), B05| B06]. From an understand-
ing of human brain development [307] to analyzing
biomarkers for AD [290], most would agree that this
approach is very useful for adding to the knowledge
accumulated so far. Nevertheless, while the solu-
tions this brings are promising, at present we are
still a long way from achieving them [308].

In ASD, most current research depends on small
samples, mostly including subjects without intellec-
tual disabilities. Pervasive sensing and efficient and
transparent Al-based technologies could increase
the number of people evaluated in each study and
account for personal differences of these individuals
caused by ASD and the comorbidities with intellec-
tual disabilities [309] B10].

9. Conclusions

Big data and ML are having an impact on most
aspects of modern life, including commerce, engi-
neering, and healthcare. There have been a great
number of technological advances within the field of
AT and data science in the past decade. Although
research in Al for various applications has been on-
going for several decades, the current wave of Al
hype is different from the previous ones.

Intelligent systems are usually considered black
boxes. In other words, in many cases, there is a
lack of transparency about how decisions are taken.
It is clear that there is a current tendency in the
development of intelligent systems to provide addi-
tional information other than just the result of the
classification itself. In fact, it is much more impor-
tant to discover why a system makes the decisions it
does instead of just knowing that it performs well.



The emergence of explainable models has provided
a boost to the interpretability of classification mod-
els. Most of them are based on attribution-based
methods, trying to locate the parts of the images
that contribute most to the classification decision.
For example, class activation mapping relies on gra-
dients to generate class-discriminative visualization
in DL architectures.

The aforementioned methods and applications
have demonstrated the tremendous success of ML
and Al techniques in the research areas analyzed in
this review paper. Among all branches of ML, DL,
in particular, has attracted the most attention from
researchers due to its powerful representation capa-
bility over the past decade [29]. As an example,
it has great potential in healthcare, assisting clini-
cians to accelerate disease diagnosis and improve di-
agnostic accuracy. However, the interpretability of
DL has long been one of the fundamental problems
in data science in general. It plays a key role in de-
termining whether users can trust these models, es-
pecially when it comes to applications for important
tasks related to human life and health. Although
DL has been shown to be very effective in a variety
of applications, users still need to understand the
reasons for the decisions and predictions made by
DL from a more detailed and concrete perspective.
Improving the interpretability of DL-based models
has gradually become a primary objective of the
field.

The use of bio-inspired approaches to optimiza-
tion and search remains an intense line of research
with many authors and groups constantly present-
ing different ideas in the aspects related to bio-
inspiration and their reflection on search explo-
ration/exploitation control, or simply in the use and
adaptation of the broad set of these methods for a
particular application domain. However, as noted
in Section [3] one of the current goals in bioinspired
search metaheuristics is to elucidate, when defin-
ing a new metaheuristic with a particular biologi-
cal or physical inspiration, what new novel strate-
gies different metaheuristics bring with respect to
well-established methods.

There has been a number of persisting challenges
in AfCAI research. Some of the most important
ones include the limited availability of data suitable
for the training of emotion recognition models. Al-
though many new data sets are available [311], they
are most often related to specific experimental con-
ditions and may not be suitable for all AfC systems.
This, in turn, contributes to the cold-start problem
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in emotion recognition. Another important chal-
lenge is related to the way data is acquired dur-
ing system design and operation. Laboratory-based
AfC experiments have limited impact on the prac-
tical development of AfC applications, as they are
quite distant from real-life conditions and sensitive
to biased reactions of participants. Therefore, there
is a clear and urgent need for ecological data collec-
tion methods and ecological datasets resulting from
them [18].

Several major trends in ASD technologies were
observed. First, in addition to mobile and screen-
based technologies, there is a clear trend in using
Al-empowered wearable and everyday objects that
sense physiological or behavioral signals for diagno-
sis, monitoring, and improved interaction of peo-
ple with ASD. Second, there is a clear trend in
adding a multitude of modalities that better can as-
sess the condition of persons with ASD, especially
in cases when these individuals suffer intellectual
disabilities and cannot self-report. Together with
the widely used signals as heart rate variability and
electrodermal activity, phonological signals, pres-
sure modalities and environmental parameters are
used to gather more contextual and person-related
information. Third, while the use of social robots in
ASD treatment is traditionally one of the most suc-
cessful applications for children with ASD, the new
trend is in combining robotics technologies with
physiological sensing for enhanced interaction and
monitoring.

From the imaging studies that have been ana-
lyzed, it can be concluded that there is an enor-
mous variety of approaches to neurological prob-
lems so that very different techniques are applied
to a wide range of diseases, such as PD or AD.
Many of these techniques arose in totally differ-
ent fields, but they have demonstrated their po-
tential when applied to brain modeling, and in this
sense, they have shown that they can be of great
efficiency for the early diagnosis of the ailment in
question. In this sense, both classical ML classifiers,
as well as more complex strategies such as DL, have
proven successful, however, brain functioning mod-
eling techniques, such as connectivity models, allow
us to get closer to an explanation of the underlying
models that can help to a greater extent to define
brain dynamics and its anomalies.
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