612 research outputs found

    Estimation of badger abundance using faecal DNA typing

    Get PDF
    1.Wildlife management and conservation programmes often require accurate information on population density, but this can be difficult to obtain, particularly when the species in question is nocturnal or cryptic. Badger populations in Britain are of intense management interest because they are a wildlife reservoir host of bovine tuberculosis (TB). Attempts to manage this infection in badgers, whether by population control or vaccination, require reliable methods of estimating population size. In addition, such estimates are also required to support research into badger ecology and TB epidemiology. Currently, the most accurate estimates of local badger population size are obtained from labour-intensive and time-consuming mark–recapture studies. 2. In recent years, DNA has been successfully extracted from the faeces of certain mammals, and used to generate a genetic profile of the defecating individual. Here we report on an application of this technology to estimate badger abundance.3.Faecal samples were collected on 10 consecutive days from every freshly deposited dropping at latrine sites close to occupied setts in three badger social groups. Badger DNA was extracted from 89% of samples, and 20 different individuals were reliably identified. The genotypes derived from the faecal samples were compared with those obtained from blood or samples from badgers live trapped at the same setts.4.The faecal genotypes from badgers with known trap histories revealed that latrines were used equally by males and females, and by badgers ranging in age from cubs(< 1 year old) to 9 years old. Individual badgers used the latrines on between one and six different nights. Rarefaction analysis produced abundance estimates that closely matched those obtained from live trapping. 5.Synthesis and applications. Systematic sampling and genetic typing of fresh faeces from badger latrines can provide data that can be used to estimate abundance accurately.This approach requires considerably less human resources than repeated live trapping and mark–recapture. The technique may be valuable for future badger research and management in relation to bovine TB, where accurate estimates of abundance at a local scale are required

    Identifying keys to success in reducing readmissions using the ideal transitions in care framework

    Get PDF
    Background: Systematic attempts to identify best practices for reducing hospital readmissions have been limited without a comprehensive framework for categorizing prior interventions. Our research aim was to categorize prior interventions to reduce hospital readmissions using the ten domains of the Ideal Transition of Care (ITC) framework, to evaluate which domains have been targeted in prior interventions and then examine the effect intervening on these domains had on reducing readmissions. Methods: Review of literature and secondary analysis of outcomes based on categorization of English-language reports published between January 1975 and October 2013 into the ITC framework. Results: 66 articles were included. Prior interventions addressed an average of 3.5 of 10 domains; 41% demonstrated statistically significant reductions in readmissions. The most common domains addressed focused on monitoring patients after discharge, patient education, and care coordination. Domains targeting improved communication with outpatient providers, provision of advanced care planning, and ensuring medication safety were rarely included. Increasing the number of domains included in a given intervention significantly increased success in reducing readmissions, even when adjusting for quality, duration, and size (OR per domain, 1.5, 95% CI 1.1 - 2.0). The individual domains most associated with reducing readmissions were Monitoring and Managing Symptoms after Discharge (OR 8.5, 1.8 - 41.1), Enlisting Help of Social and Community Supports (OR 4.0, 1.3 - 12.6), and Educating Patients to Promote Self-Management (OR 3.3, 1.1 - 10.0). Conclusions: Interventions to reduce hospital readmissions are frequently unsuccessful; most target few domains within the ITC framework. The ITC may provide a useful framework to consider when developing readmission interventions

    Limits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors at the Tevatron

    Full text link
    We present 90% confidence level limits on magnetic monopole production at the Fermilab Tevatron from three sets of samples obtained from the D0 and CDF detectors each exposed to a proton-antiproton luminosity of 175pb1\sim175 {pb}^{-1} (experiment E-882). Limits are obtained for the production cross-sections and masses for low-mass accelerator-produced pointlike Dirac monopoles trapped and bound in material surrounding the D0 and CDF collision regions. In the absence of a complete quantum field theory of magnetic charge, we estimate these limits on the basis of a Drell-Yan model. These results (for magnetic charge values of 1, 2, 3, and 6 times the minimum Dirac charge) extend and improve previously published bounds.Comment: 18 pages, 17 figures, REVTeX

    A theoretical and empirical investigation of nutritional label use

    Get PDF
    Due in part to increasing diet-related health problems caused, among others, by obesity, nutritional labelling has been considered important, mainly because it can provide consumers with information that can be used to make informed and healthier food choices. Several studies have focused on the empirical perspective of nutritional label use. None of these studies, however, have focused on developing a theoretical economic model that would adequately describe nutritional label use based on a utility theoretic framework. We attempt to fill this void by developing a simple theoretical model of nutritional label use, incorporating the time a consumer spends reading labels as part of the food choice process. The demand equations of the model are then empirically tested. Results suggest the significant role of several variables that flow directly from the model which, to our knowledge, have not been used in any previous empirical work

    Influence of spark ignition in the determination of Markstein lengths using spherically expanding flames

    Get PDF
    Constant pressure outwardly propagating flame experiments in a spherical bomb are performed to examine the duration and radius over which spark ignition effects persist. This is motivated by the need to properly account for such effects in the measurement of laminar burning velocity and Markstein length using the spark ignited expanding flame technique. Ignition energy was varied and its effects on flame propagation in methane-air and isooctane-air mixtures were studied. The Markstein length of the mixture proved critical in the ignition energy dependency of flame propagation. For relatively high values, an underlying common variation of self-sustaining flame speed with radius can be identified by the rapid convergence of curves for different ignition energies. As the Markstein length decreases, low energy spark ignition is found to give rise to a distorted and wrinkled flame kernel. For such mixtures, due to the weak effect of stretch, the kernel subsequently develops into a non-spherically propagating flame. In these cases the spark ignition effect persists up to large radius. It is shown that using low ignition energy leads to a flame speed, during the development phase, which is higher than that of a self-sustaining spherical flame. It is further shown that if this effect is not accounted for, measurements of Markstein length using standard fitting techniques results in a large error. This problem is found to worsen as the Markstein length decreases, such that its apparent measured value becomes increasingly influenced by any distortions of the flame kernel produced by the spark

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Measurement of Exclusive rho+rho- Production in Mid-Virtuality Two-Photon Interactions and Study of the gamma gamma* -> rho rho Process at LEP

    Full text link
    Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2
    corecore