923 research outputs found
Relativistic predictions of spin observables for exclusive proton knockout reactions
Within the framework of the relativistic distorted wave impulse approximation
(DWIA), we investigate the sensitivity of complete sets of polarization
transfer observables for exclusive proton knockout from the 3s,
2d and 2d states in Pb, at an incident laboratory
kinetic energy of 202 MeV, and for coincident coplanar scattering angles
(, ), to different distorting optical potentials,
finite-range (FR) versus zero-range (ZR) approximations to the DWIA, as well as
medium-modified meson-nucleon coupling constants and meson masses. Results are
also compared to the nonrelativistic DWIA predictions based on the
Schr\"{o}dinger equation.Comment: Submitted for publication to Physicical Review C, 23 pages, 7 figure
Density Waves in Layered Systems with Fermionic Polar Molecules
A layered system of two-dimensional planes containing fermionic polar
molecules can potentially realize a number of exotic quantum many-body states.
Among the predictions, are density-wave instabilities driven by the anisotropic
part of the dipole-dipole interaction in a single layer. However, in typical
multilayer setups it is reasonable to expect that the onset and properties of a
density-wave are modified by adjacent layers. Here we show that this is indeed
the case. For multiple layers the critical strength for the density-wave
instability decreases with the number of layers. The effect depends on density
and is more pronounced in the low density regime. The lowest solution of the
instability corresponds to the density waves in the different layers being
in-phase, whereas higher solutions have one or several adjancet layers that are
out of phase. The parameter regime needed to explore this instability is within
reach of current experiments.Comment: 7 pages, 4 figures. Final version in EPJD, EuroQUAM special issue
"Cold Quantum Matter - Achievements and Prospects
Modern topics in theoretical nuclear physics
Over the past five years there have been profound advances in nuclear physics
based on effective field theory and the renormalization group. In this brief,
we summarize these advances and discuss how they impact our understanding of
nuclear systems and experiments that seek to unravel their unknowns. We discuss
future opportunities and focus on modern topics in low-energy nuclear physics,
with special attention to the strong connections to many-body atomic and
condensed matter physics, as well as to astrophysics. This makes it an exciting
era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting
at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde
BEC Collapse and Dynamical Squeezing of Vacuum Fluctuations
We analyze the phenomena of Bose Novae, as described by Donley et al [Nature
412, 295 (2001)], by focusing on the behavior of excitations or fluctuations
above the condensate, as driven by the dynamics of the condensate (rather than
the dynamics of the condensate alone or the kinetics of the atoms). The
dynamics of the condensate squeezes and amplifies the quantum excitations,
mixing the positive and negative frequency components of their wave functions
thereby creating particles which appear as bursts and jets. By analyzing the
changing amplitude and particle content of these excitations, our simple
physical picture (based on a test field approximation) explains well the
overall features of the Bose Novae phenomena and provide excellent quantitative
fits with experimental data on several aspects, such as the scaling behavior of
the collapse time and the amount of particles in the jet. The predictions of
the bursts at this level of approximation is less than satisfactory but may be
improved on by including the backreaction of the excitations on the condensate.
The mechanism behind the dominant effect -- parametric amplification of vacuum
fluctuations and freezing of modes outside of horizon -- is similar to that of
cosmological particle creation and structure formation in a rapid quench (which
is fundamentally different from Hawking radiation in black holes). This shows
that BEC dynamics is a promising venue for doing `laboratory cosmology'.Comment: Latex 36 pages, 6 figure
A model for net-baryon rapidity distribution
In nuclear collisions, a sizable fraction of the available energy is carried
away by baryons. As the baryon number is conserved, the net-baryon
retains information on the energy-momentum carried by the incoming nuclei. A
simple and consistent model for net-baryon production in high energy
proton-proton and nucleus-nucleus collisions is presented. The basic
ingredients of the model are valence string formation based on standard PDFs
with QCD evolution and string fragmentation via the Schwinger mechanism. The
results of the model are presented and compared with data at different
centre-of-mass energies and centralities, as well as with existing models.
These results show that a good description of the main features of net-baryon
data is possible in the framework of a simplistic model, with the advantage of
making the fundamental production mechanisms manifest.Comment: 9 pages, 12 figures; in fig. 11 a) the vertical scale was correcte
Thermodynamics of Dipolar Chain Systems
The thermodynamics of a quantum system of layers containing perpendicularly
oriented dipolar molecules is studied within an oscillator approximation for
both bosonic and fermionic species. The system is assumed to be built from
chains with one molecule in each layer. We consider the effects of the
intralayer repulsion and quantum statistical requirements in systems with more
than one chain. Specifically, we consider the case of two chains and solve the
problem analytically within the harmonic Hamiltonian approach which is accurate
for large dipole moments. The case of three chains is calculated numerically.
Our findings indicate that thermodynamic observables, such as the heat
capacity, can be used to probe the signatures of the intralayer interaction
between chains. This should be relevant for near future experiments on polar
molecules with strong dipole moments.Comment: 15 pages, 5 figures, final versio
Experimental Study of the Shortest Reset Word of Random Automata
In this paper we describe an approach to finding the shortest reset word of a
finite synchronizing automaton by using a SAT solver. We use this approach to
perform an experimental study of the length of the shortest reset word of a
finite synchronizing automaton. The largest automata we considered had 100
states. The results of the experiments allow us to formulate a hypothesis that
the length of the shortest reset word of a random finite automaton with
states and 2 input letters with high probability is sublinear with respect to
and can be estimated as $1.95 n^{0.55}.
Event-by-event fluctuations of average transverse momentum in central Pb+Pb collisions at 158 GeV per nucleon
We present first data on event-by-event fluctuations in the average
transverse momentum of charged particles produced in Pb+Pb collisions at the
CERN SPS. This measurement provides previously unavailable information allowing
sensitive tests of microscopic and thermodynamic collision models and to search
for fluctuations expected to occur in the vicinity of the predicted QCD phase
transition. We find that the observed variance of the event-by-event average
transverse momentum is consistent with independent particle production modified
by the known two-particle correlations due to quantum statistics and final
state interactions and folded with the resolution of the NA49 apparatus. For
two specific models of non-statistical fluctuations in transverse momentum
limits are derived in terms of fluctuation amplitude. We show that a
significant part of the parameter space for a model of isospin fluctuations
predicted as a consequence of chiral symmetry restoration in a non-equilibrium
scenario is excluded by our measurement.Comment: 6 pages, 2 figures, submitted to Phys. Lett.
Uncovering precision phenotype-biomarker associations in traumatic brain injury using topological data analysis
Background: Traumatic brain injury (TBI) is a complex disorder that is traditionally stratified based on clinical signs and symptoms. Recent imaging and molecular biomarker innovations provide unprecedented opportunities for improved TBI precision medicine, incorporating patho-anatomical and molecular mechanisms. Complete integration of these diverse data for TBI diagnosis and patient stratification remains an unmet challenge.
Methods and findings: The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot multicenter study enrolled 586 acute TBI patients and collected diverse common data elements (TBI-CDEs) across the study population, including imaging, genetics, and clinical outcomes. We then applied topology-based data-driven discovery to identify natural subgroups of patients, based on the TBI-CDEs collected. Our hypothesis was two-fold: 1) A machine learning tool known as topological data analysis (TDA) would reveal data-driven patterns in patient outcomes to identify candidate biomarkers of recovery, and 2) TDA-identified biomarkers would significantly predict patient outcome recovery after TBI using more traditional methods of univariate statistical tests. TDA algorithms organized and mapped the data of TBI patients in multidimensional space, identifying a subset of mild TBI patients with a specific multivariate phenotype associated with unfavorable outcome at 3 and 6 months after injury. Further analyses revealed that this patient subset had high rates of post-traumatic stress disorder (PTSD), and enrichment in several distinct genetic polymorphisms associated with cellular responses to stress and DNA damage (PARP1), and in striatal dopamine processing (ANKK1, COMT, DRD2).
Conclusions: TDA identified a unique diagnostic subgroup of patients with unfavorable outcome after mild TBI that were significantly predicted by the presence of specific genetic polymorphisms. Machine learning methods such as TDA may provide a robust method for patient stratification and treatment planning targeting identified biomarkers in future clinical trials in TBI patients
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …
