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Bose-Einstein condensate collapse and dynamical squeezing of vacuum fluctuations

E. A. Calzettd* and B. L. H#'
!Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buene<Chicesl Universitaria,
1428 Buenos Aires, Argentina
2Department of Physics, University of Maryland, College Park, Maryland 20742, USA
(Received 15 May 2003; published 27 October 2003

We analyze the phenomena of condensate collapse, as described by BtoalldNature412, 295 (2001)]
and N. ClaussefPh. D thesis, University of Colorado, 200@npublished] by focusing on the behavior of
excitations or fluctuations above the condensate, as driven by the dynamics of the condensate, rather than the
dynamics of the condensate alone or the kinetics of the atoms. The dynamics of the condensate squeezes and
amplifies the quantum excitations, mixing the positive and negative frequency components of their wave
functions thereby creating particles that appear as bursts and jets. By analyzing the changing amplitude and
particle content of these excitations, our simple physical picture explains well the overall features of the
collapse phenomena and provides excellent quantitative fits with experimental data on several aspects, such as
the scaling behavior of the collapse time and the number of particles in the jet. The prediction of the bursts at
this level of approximation is less than satisfactory but may be improved by including the backreaction of the
excitations on the condensate. The mechanism behind the dominant effect—parametric amplification of
vacuum fluctuations and freezing of modes outside of horizon—is similar to that of cosmological particle
creation and structure formation in a rapid quefehich is fundamentally different from Hawking radiation
in black hole$. This shows that Bose-Einstein condensate dynamics is a promising venue for doing “labora-
tory cosmology.”
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I. INTRODUCTION sate are observed, the so-called “jets.” Jets are distinct from
bursts: they are colder, weaker, and have a distinctive disk-
We introduce a perspective in the analysis of the phenomlike shape.
ena of condensate collapse, described by Donley and co- The experiment of Donley and co-workers takes full ad-
workers[1,2], by focusing on the behavior of fluctuations vantage of the tunability of the effective atomic interaction
above the condensate, rather than the condensate itself. Wee to a Feshbach resonance characteristicRib[3,4]. The
show that the condensate dynamics squeezes, amplifies, afgbonance is caused by the presence of a bound state whose
mixes positive and negative frequency components of theinding energy may be tuned by means of an external mag-
wave functions of the condensate excitations. In addition taetic field. In later experiment$,6], observed fluctuations
providing a good qualitative understanding of the generaln the number of particles in the condensate have been well
picture, our theory also produces precise predictions, specifexplained as arising from oscillations between the usual
cally, on the critical number of particles at the first instanceatomic condensate and a molecular sfate12].
when the instability sets in, the scaling of the waiting time  These oscillations were observed for magnetic fields in
teollapses @nd the number of particles in a jet. In this rendi- the order of 160 G, where the effective scattering length is of
tion we point out the analogy between the evolution of quanthe order of 508, (and positiveé (ag=0.529<10 °m is
tum excitations of the collapsing condensate and the vacuunie Bohr radiusand the frequency of oscillations is of hun-
fluctuations parametrically amplified by the backgrounddreds of kHZ5,6]. By contrast, in the experiment of Donley
space-time in the Early Universe, suggesting a new venue faind co-workerg1] typical fields were around 167 G, the
“laboratory cosmology.” scattering length was only tens of Bohr ratiind negative
A condensate formed from a gas of céBInK) rubidium  and the frequency of atom-molecule oscillations may be es-
atoms is rendered unstable by a sudden inversion of the sigimated as well over 10 MHEL3]. Under these conditions it
of the interaction between atoms. After a waiting timeis unlikely that the molecular condensate plays any important
teonapses the condensate implodes, and a fraction of the coneynamical role, and indeed no oscillations are reported in the
densate atoms are seen to oscillate within the magnetic tragriginal paper(for the opposite view, see Ref14]). For
that contains the gasee below and Refl]). These atoms these reasons and to highlight the mechanism particular to
are said to belong to a “burst.” In the experiments describechis experiment, we shall not include explicitly a molecular
by Donley and co-workerfl, 2], the interaction is again sud- condensate in our model but discuss in detail the one-field
denly turned off after a timey,,,e. FOr a certain range of model. However, if needed, this may be done in a very
values of7g, 1,6, NEW emissions of atoms from the conden- simple way, by including a second field to describe molecu-
lar destruction and creation operatdi$,10,14. We will
elaborate on this point in a later subsection
*Email address: calzetta@df.uba.ar There is a vast literature attempting to provide theoretical
"Email address: hub@physics.umd.edu explanations of collapsing condensafé5—21. In addition
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to speculations that collapse is due to molecular oscillation®ackground space-tinj@0,41]. (For a squeezed state depic-
as alluded abovéwhich we view as of secondary impor- tion of this process, see, e.g., R¢#2], and references
tance, the most serious theoretical attempt is based on théherein) One could view condensate collapse as a laboratory
Gross-Pitaevskii(GP) equation with explicitly introduced realization of cosmological particle creation during quench-
nonlinear terms to account for multiparticle interactionsing. (Note this is not the physical process behind black hole
[21,22. We will show that the primary mechanism respon- particle creation, as in the Hawking effect, much attention
sible for the main features of the experiment of Donley anddrawn to its detection in BEC notwithstandifgg3].) In this
co-workers[1,2] originates from the dynamics of quantum process there is a competition between tiioverse time
fluctuations around the background condensate (§eliiVe  scales, the physical frequency of the mode under consider-
start with the Heisenberg operator for the many-body wavation and the inverse collapgexpansioi rate of the con-
function and split it into a-number part describing the con- densate. In cosmology the inverse expansion rate is the
densate amplitude andggnumber part describing collective Hubble constant for the background space time. While a
excitations(not individual atomsabove the condensate. We mode whose physical frequency is higher than the Hubble
then derive an evolution equation for the wave-function op-constant, we refer to it as “inside the horizon,” and its be-
erator of the quantuninoncondensajeexcitations under an havior is oscillatory. When the converse holds, the mode is
improved Hartree approach, the so-called Popov approximdoutside the horizon.” They are depicted as “frozen” be-
tion [23-24. cause they do not oscillatesee below, but are amplified

In this paper, we use a “test field” approximation, by [44]. This amplification is largely responsible for the ob-
adopting(rather than derivingthe specific evolution of the served primordial density contrast in the Univefds].
condensate extracted from the experiment as given and study In the condensate collapse problem, the role of the
the dynamics of the excitations riding on this dynamics. Note'Hubble” constant is played by the inverse growtbxpo-
that the experimentally given condensate dynamics is differnentia) rate of the most unstable mode of the condensate,
ent from the mean-field dynamics obtained from a solutiorwhich is determined by the instantaneous number of particles
of the GP equation, because the former includes the dynamin the condensate. Modes whose natural frequency is greater
cal effects of the fluctuations. Finding a self-consistent soluthan the corresponding scale are relatively impervious to the
tion of the evolution equations for both the condensate andynamical condensate, but when the converse holds, conse-
its fluctuations is called the “backreaction problem.” It has quences are drastic. When the exponential growth is the
been studied in detail in problems of similar contexts such aslominant factor, the mode is frozen; instead of oscillating, it
cosmological particle productiaisee below Theoretical in- is being amplified, a process that is analogous to the growth
vestigations for the Bose-Einstein condeng8&C) fluctua-  of fluctuations during spinodal decompositiptb].
tions dynamics can be found in Refg,27,28. The squeez- In the same way that modes that left the horizon during
ing of quantum unstable modes and its backreactions on thieflation return during the radiation and matter dominated
condensate have been considered before, e.g., as a dampargs, giving rise to acoustic oscillations, as the unstable con-
mechanism for coherent condensate oscillatip?®], and densate sheds its atoms and approaches stability, the band of
also applied to the description of condensate colld@®e-  frozen modes narrows: we say that modes “thaw” as they
34]. Field-theory methods have recently been applied to theurn from exponentially increasing to oscillatory behavior.
problem of formation and stability of Bose-Einstein conden-The crux of the matter is that only oscillating modes are
sates[35,36. Fluctuations have also been considered bydetected through destructive absorption imagiseg below.
Goral et al.[37] and Graham and co-worke38]. Our work ~ Whenever a mode thaws, it is perceived as if particles were
differs from theirs in the emphasis we place on the behaviobeing created. In the conditions of the experiment the initial
of the quantum excitations as a consequence of condensatember of actual particles above the condensate is negli-
dynamics. gible, and we may describe the phenomenon as particle cre-

Particularly relevant to the present work is REB1], ation from the vacuum.
where condensate collapse is analyzed from the point of To summarize, the key idea in our understanding of the
view that the physics is mainly due to the dynamics of quanphenomena associated with a condensate collapse is that of a
tum fluctuations, the same view as we hold here. There, thdynamical background field of the condensate squeezing and
trapping potential is replaced by a normalizing box, whosemixing the positive and negative frequency components of
volume is eventually taken to infinity. Our analysis in Secs.its quantum excitations, thereby creating particles from the
Il and Il is for a more realistic geometry, which enables usvacuum. The point of view of this work may be easily incor-
to compare quantitatively to experiments. The analysis oporated in a first-principles approach as taken in, e.g., Refs.
bursts versus jets given in Sec. IV however originates from §47-50. The remarkable analogy between condensate col-
concept inspired by cosmological processes. lapse and quantum processes in the Early Universe and spin-

To the extent that many phenomena observed in conne@dal decomposition in phase transitions may stimulate new
tion to the collapse of this nature are essentially the result ofelated experiments in BEC, to be carried out to address
a quantum fluctuation fieldthe noncondensatenteracting these problems in cosmology and condensed matter physics
with a time-dependent backgrourithe condensajeas we  [51].
believe it is, there is a close analogy with similar processes in This paper is organized as follows. In Sec. Il we briefly
the Early Universe, specifically, vacuum particle creationreview the phenomenology of condensate collapse and set up
from a time-dependent external fie[@9] or in a curved the basic mathematical model. In Sec. Il we give a discus-
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FIG. 1. (Color onling Effective scattering length as a function FIG. 2. (Color onling Qualitative evolution of the effective
of applied magnetic fiel@unlike in the body of the paper, we follow scattering length as a function of time in the experiment by Donley
here the usual sign conventjorThe scattering length is measured and co-workerg1,2] (unlike in the body of the paper, we follow
in multiples of Bohr radiusa,=0.529x 10 *® m. The magnetic here the usual sign conventjoiThe scattering length in measured
field is measured in Gauss. In the experiment by Donley and coin multiples of Bohr radiug,=0.529< 10" *° m, time is measured
workers[1,2], the condensate is preparedBst,, and then evolved in milliseconds. The condensate is prepareéatd, and then the
to alarger field. In later experimentg5,6] the field was turned to a  effective interaction is made attractive. After a ting,j,e, the
lower value, close toBpq for a short time, and somewhere be- interaction is made repulsive, which allows the condensate to ex-
tweenBpeax and B, for the duration of the experiment. pand and aids visualization.

sion of the onset of instability and of the scaling of the wait-the condensate eventually stabilizes retaining a number
ing time teo)1apse With the scattering length. In Sec. IV, we N, of atoms.

turn to a discussion of bursts and jets, based on the distinc- During this period’ a cloud or burst of atoms is observed.

tion between frozen and thawed modes. By postulating ghese atoms oscillate in the radial direction with the trap
specific condensate evolutiofextracted from the experi- radial frequency. The energy associated with the burst is
meny we obtain quantitative predictions for the number of |arger in the radial direction than in the axial direction. The
particles in a jet as a function of the timg, ), (When the  number of atoms in the burst increases with the time elapsed
scattering length is brought to zer®ur results are summa- since the decay begins, with a time constant of about 1.2 ms;
rized in the final section. A few technical details are left to after 7 ms, the number of burst atoms stabilizes. About a fifth
the appendixes. of the atoms in the condensate go into the burst, with varia-
tions of about 20%.
Il. THE MODEL Condensate decay is interrupted at a til¥e7g,o1 e,

when the scattering length is again tuned to a positive value.
If the condensate is already stabilizedrgt,, e, Nothing too

In the Donleyet al. experimen{1] a gas ofN ®Rb atoms  drastic happens, but otherwise a new phenomenon appears,
at a temperature of 3 nK is prepared in a state where thegamely the expulsion of a jet of atoms. Jets have much lower
behave essentially as a free gas within an anisotropic hakinetic energy than bursta few nano-Kelvin.
monic trap(see Figs. 1 and)2The trap has a cylindrical
geometry[let r=(p,¢,z) be the usual cylindrical coordi- B. Basic equations
nates, withe being the azimuthal anglethe trap frequencies
are Vradial = 175 Hz (u)radia|:27TVradia|: 110 HZ) and
Vaxial= 6.8 HZ (wayja=42.7 Hz). At timet=0, the scatter-

ing lengtha (see below is suddenly turned to a negative R £2 u
H=J dr{——\PTVZ\P+V(r)\IJTlIf—5\IIT2\P2 ,

A. An overview of condensate collapse

The modet is based on the Hamiltonian operator fi§r
interacting atoms with madd in a trap

value —acqjapse- This configuration is known to be unstable M
whenever the numbe, of atoms in the condensate exceeds )
kano/|al, whereay, is a characteristic length of the trap.
The coefficientk was reported as=0.46 [52], but later
measurements suggest it should be raised=®.55[2,13].  With the total number operatdt given by
For Ny=6000 atoms, the instability threshold is reported
at|a]=a.,=5.12a,, whereay,=0.529< 10" 1° m. Therefore
ano="5.6X 10*ag=3x10"% m. If we write a?,=%/Mw and N= f drrp, 2
introduce the atomic mass of 86~ 1.3x 10 2° kg and#
=1.05<10 **Js, this corresponds to a frequenay

=90 Hz. Ih's alll%rees well with the geometric aver:itge UIn writing down the main equations of our model, we choose a
= (waxial®ragial) =80 Hz. It follows that th,=w

sign convention that makes the effective coupling constant positive
=12.5 ms. for an attractive interaction, and a system of units adapted to the

In spite of the instability, over a tim&,qjjapse there is N0 problem. Taking the average frequenayas reference, we may
significant decay of the condensatgy)apse depends very define length and time scaleg, andt,, (see aboveand an energy
strongly onacgjapse (S€€ below. After teqapse, the number  scaleE,,=#w=Mw?aZ,. From now on, we shall choose units
of atoms in the condensate falls exponentially. If left to itself,such that these three scales take value 1.
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Here V(r) is the trap potential antl is (assumed to be a and
short rangeflthe interaction between the atoms. We intro- 5
duce a dimensionless field operat¥(x), n=(¥TW)=|®|2+ (4 y)=ny+n, (15)

lI’(r)zaijtf’/z‘lf(x), (3 where() denotes the expectation value with respect to the

. o . initial quantum state. The cross terms vanish because the
whereay,, is a characteristic length of the trap, and a dimen-mean field is defined with zero fluctuations. Hage=|®|? is
sionless coupling constant the number density of the condensate are(y ) is the

Uzhwaﬁou. 4) number density corresponding to the fluctuations. Further,

a2 — * T 2 2
In terms of the scattering length (which we define as YWI=(07 ¢ ) (PTH 20 g+ yr)

positive for an attractive interactiprwe have =| D20+ 2| D)2+ D2y + 20 gy
Amh?a +O* 2+ Ty, 16
U WM | - Yy Ty (16)
Under the self-consistent mean-field approxima{i@g]

So + + ~
Y=y ¢)=n, 17
_ 4mha .4 a 6 B

U Mea, e © WA=(y?)=m, (19

The Hamiltonian and the trap potential can also be writtevherem is sometimes called the anomalous density, and
in terms of dimensionless variables
' y?=0. (19

Taking the expectation value of the Heisenberg equation, we
obtain the Gross-Pitaevskii equatiGBPE)

H=EpH, V(N=EpV(r). v
Assuming a cylinder shaped potential
V(1) =3(w32*+ w3p?), ® i%—H<I>+u|CI>|ZCI>+u{2<I>F1+CI>*r~n}=0. (20)
with radial p and longitudinalz coordinates measured in

units of ay,, with associateddimensionless frequencies ~Subtracting this from the original EG10), and neglecting
0= Oayiall 0~ 112 aNAw, = 0ragia | 0~ /2. nonlinear terms, we obtain the equation for the fluctuation

¥ obeys the equation of motion field

¥=i[H,¥] (9) P(X)+udy (x)=0. (21

L Ht2uof?
IE U||

and the equal time commutation relations . ) , .
This is the basic equation we shall use here for analyzing the

[W(t,r),¥tr)]=6%r-r"), (10) behavior of the excitationdluctuations$ for a given conden-
sate evolution. From the evolution of the fluctuations we can
whereby then calculate the modified evolution of the condensate. Note
that only in taking the Bogoliubov approximatigsettingn
oV ~ . . . .
i— =HWV —uv 2 (12) =m=0) will one get a closed equation, the Gross-Pitaevskii
at equation, for the condensate. In principle these two equations

for fluctuations(21) and condensaté0) need be solved to-
gether in a self-consistent mann€rhis is called the “back-

= —1y24v(r) 12 reaction problem” first studied in external field or cosmo-
logical particle creation problemsHere we solve only the

is the (dimensionlessone-particle trap Hamiltonian. We de- €dguation for the fluctuation field using the experimentally
compose the Heisenberg operatbrinto a c-number con- measured value for the background field. As mentioned ear-

densate amplitud® and ag-number noncondensate ampli- lier this is already dlowest-ordey backreaction-modified or

Here

tude , consisting of the fluctuations or excitations self-consistent solution which is an improvement over the
' mean-field solution obtained from the GP equation.
W(r,t)=®(r,t)+(r,t). (13) We next parametrize the wave functions as
Then D=0 ', (22)
VIV =[RPHD(y +y) -yl (14 Y=1oe”, (23
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whered®, and® are real. We seek to express the two equain the subspace orthogonal to the condensate, the operator
tions for @, by the three equations for the three real quan-has an inverse, hence
tities @, ¢,0. Observe that 2¢

n=[H—Eol =, (34)

ViFe '®)=e '*{VIF-2iVOVF-[iV?0+(V0O)*]F},

(4) and since the trap Hamiltonian is time independent, we have
therefore,
0 1 1 a2§+[H EolHe16=0 (35
J ~ ~ — — =0.
—+ =(V0)?— —H®y+ud3+u{2n+Rem}=0, at? 0 et
a2 Dy
(25 Here
oD 1 - Herr=H—Eo—2ud3 36
24 VOVD,+ = (V20)Dy+udoim m=0, (26) eff 0 0 (36

ot 2 . . . . L .
is the Hamiltonian for a particle moving in the potential

00 .2
Dot UDGY+ o~ +1V OV g V(r)=3[wiz?+ wip?~Ae™" —2E], (37

.0 5
{ e H+2udg
1 wherer?= w,7z?+ w ,p? andA=4N,u/ %2 [Recall from ex-

n E[iV2®+(V®)2] o=0. (27) pe;igge]nt that the condensate is stable Ast16(0.55)A/m

. . N . . Supposq H—Ey]H¢:t has eigenvectorgy , with eigen-
';Ii-gr? third equation may be simplified by using the first equa‘values)\K, we can expand

d 1 1 )
i E+(V®)V+§V2® —H+ —(H®o)+udg |y

€= c(t) i (38)
@O n

(28) Thenc(t) will be a superposition of two harmonic oscilla-
tions with frequenciest VA,. To have an unstable conden-

We have also neglected terms which were nonlinear in flucSat€ it is necessary that at least one ofNQés negative; the
tuations. boundary of stability occurs when the lowest, say\, is
exactly zero. SincgH—Ey] has an inverse, the equation
[H—Eo]Het1po=0 impliesHefpp=0.

In conclusion, the onset of collapse corresponds to the
A. The early stage minimum value of the condensate density for which the ef-
fective HamiltonianH . develops a zero mode.

+ud3yl=0.

Ill. ONSET OF COLLAPSE AND SCALING OF tcopapse

During the first few milliseconds of evolution, we may
regard the condensate density as time independent, and the

condensate phase as homogengsaes Appendix A for jus- B. The onset of collapse
tification). We may then write the equation for the fluctuation  we shall now study the spectrum of the operattyi.
field Eq.(21) as The idea is that the low-lying states, which are the most
g relevant ones to our discussion, will try to keep close to
[i — —H+Eg| tho+ UDZ(ho+ ) =0, (290  Where the potential is a minimum, namely, the origin. If the
ot width of the state is small enough, the potential will be

nearly harmonic.
Eo=3(0w,+2w,). (30 One further consideration is that we are interested in the
. . o _ part of the fluctuation field which remains orthogonal to the
To solve this equation we decompose it into a self-adjointondensate, since fluctuations along the condensate mode

and an antiadjoint part may be interpreted as condensate fluctuations rather than par-
o ticle loss. This is granted for all modes with odd parity; for
Yo=&+in, (32) modes of even parity, it means that a certain combination

must be excluded. The ground stateHb; is certainly not
orthogonal to the condensate, since neither has nodes.
¢ A simple but remarkably accurate way of dete_rmini_ng
= ~[H=Eolm, (32 whether or notH.¢; admits a zero mode is to consider its
expectation valu€H.¢;) with respect to some appropriate
trial state. The first excited eigenvalligyg is the minimum
possible expectation value, taken with respect to any normal-
ized state orthogonal to the ground state. Therefore, if we

with each part satisfying an equation:

Jan 2
E—F[H—EO—ZUCDO]g:O. (33
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may exhibit a wave function leading to a negatité.ss),
then necessarilfog is negative as well.

Let us write
Herr=H5+H5—2udi—E,, (39
2 2.2
p; w;Z
Z —_—
Hg 5 5 (40
2 2 2
pp wpp
p—_P
Hj 5 + 5 (41
Recall for the condensate
N
Df=—gpe Lo T, (42)
ar

We shall try to minimize the expectation value df with
respect to a wave function of the form

W2 g (X)), 43

whereyg andy{ are the fundamental and first excited states
of a one-dimensional harmonic oscillator with arbitrary fre-

quency(},
14
‘/’8 _ (%) 6—022/2, (44)

QO

QO 1/4 )
. 7) (Ql/ZZ)efﬂz /2. (45)

The free part yields

2
z

0+ =2

S

: (46)

3
(Ho) =7

=

™ N

(47)

{O|€

1
<H8>: E Qp+

p

The condensate part yields

f dPr o3y A2 () v (y)]2

No
7312

Q0¥ (w,+0,) ¥ w,+0,) 1. (49

Putting them together

2
wZ

1|3
<Heff>:§ 5 QZ+Q_Z +

—w,— 2w

wZ
p
QP+Q_p p

- : (49
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where

No 16 a

N

If we adopt the values,=1/2, w,= \J2, relevant to the
JILA experiment, then we obtaifH ;)= 0 for the first time
whenA=A;~4.6,(,~0.78, and ,~1.7. From the defi-
nition of A, we conclude that instability will occur when

N Acrit _ \/;

Oaho K:E

A=4u

—. 50
07 (50)

Acir=0.51. (51)

This result compares remarkably well with the experimental
value k=0.55, as well as with the theoretical estimate pre-
sented in Ref[53]. This agreement may be seen as natural,
as the equations we postulate for the fluctuations may be

obtained from the linearization of the GPE, discarding both n

and m In both calculations, the geometry of the trap plays a
fundamental role.

C. Scaling oftgojjapse

As we have already noted, even for condensate densities
above the stability limit, no particle is seen to be lost from
the condensate during a waiting timgapse-

Even in the absence of a detailed model of the condensate
evolution, the above analysis allows us to make a definite
prediction of the wayt.,apse SCales with the scattering
length. The basic idea is that, whitg,;pse depends in a
complex way on several time scales, some intrinsic to the
condensate and some related to the condensate-
noncondensate interaction, uptiQapse the time scales in-
trinsic to the condensate are very large compared to the other
processes. The nontrivial point is that even in this limit the
time scales of the noncondensate remain finite, and so they
fix the scale fort;qapseitself. Using the exponential growth
of the first excited state as a measure, we are led to the
estimatetojjapse=& -

Consider a value oA close to, yet higher than, the critical
one. The fastest growing mode is the eigenvectoq ldf
—Eg]Hes With most negative eigenvalue, sayo. WhenA
takes the critical valud.,, c=0. Close to the critical point,
we may computes using time independent perturbation
theory, even iffH—Eq]Hc¢s is not Hermitian. The idea is
that at the critical value oA there is a single normalized
state [1000 orthogonal to the condensate such that
- EO]Heff| 100>:0 and

(100[H—Eo]He g ¢} +(#|[H—Eo]Her1 100 =0
(52

for any state|) orthogonal to both condensate ajid0)
(otherwise, there would be states orthogonal to the conden-
sate with{[H — Ey]H¢)<0, which is impossible Now for

A slightly above the critical value, leto)=|100)+|do),
(100 50)=0 be the eigenstate corresponding to the mini-
mum eigenvalue- o. Then
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_O':<10q[H_ EO]Heff| O'> tlczllapse
=(100[H—Eg]H¢t{ 100 + higher-order terms
(53 12
and so
10
A 2
o~ —1[{([H=Eg]2udg), (549
Acrit 8
where the expectation value is computed at the critical point.
Since we know the form of the wave function, computing the g
expectation value is a simple exercise. We find that the grow-
ing mode increases as exfp where 4
A 1/2
8=J3~T( —1) (55) 2
Acrit
andT=([H—Eg]2u®3)~0.6. SinceA/A.,;=ala,, for the Seollapee
given total number of atoms, 10 20 30 40 50 60 70 °
a 12 FIG. 3. (Color onling Plot of t¢yapse (in milliseconds against
teollapse= terit| — 1) (56) Acollapse (N Multiples of Bohr radiusay=0.529 10 m). We
Acr plot the scaling law Eq(56) (full line) and compare it against the

experimental data foN,=6000 as reported in Ref§l,2] (small

The power-law Eq(56) describes with great accuracy the plack dots, thety, ~(uNo) ~* prediction(suitably scalefias given
way teoiapse Scales with the scattering length; the actual pre-in Refs.[31,2] (dashed ling and the results of numerical simula-
diction t.;,~T ! is correct only as an order of magnitude tions reported in Ref{21] (large gray dots While all three theo-
estimate. In natural unitd;,* is about 20 ms, while the best retical predictions may be considered satisfactory, thg
fit to the experimental data is obtained fQf;~5 ms. ~(uNo) ~* fails to describe the divergence fjapseas the critical

We should stress that the factor of 4 discrepancy betweepoint is approached. The results of numerical simulations based on
our prediction and the experimental result could be easilyan improved Gross-Pitaevskii equation tend to be systematically
explained away in terms of a more complete model of conabove the experimental results. In a glagsical instability, the_ un-
densate depletion. For example, the probability for two par_stable modes must grow from zero, while in gquantum_mstabnl@,
ticles in the condensate to collide and transfer to the growind'€y are always seeded by their own zero-point fluctuations, which
mode, Bose enhanced by the population in the latter, Woulapeed§ up the de\{elopment of the |nst§b|I|ty. Therefore, the fact that
go as ()2, thereby yielding the factor of 4 in the expo- Numerical simulations tend to overestimagapse may be a fur-
nent. However, in this paper we shall keep to our goal Ofther indication of the quantum origin of the phenomenon.
providing the simplest theory which gives the best qualita-
tive description of the condensate collapse phenomendhey are always seeded by their own zero-point fluctuations,
hereby understood as arising from the quantum dynamics ofhich speeds up the development of the instability. There-
the fluctuations. fore, the fact that numerical simulations based on classical

An analysis of collapse based on the Popov approximainstability tend to overestimatgjapse may be a further in-
tion equations, for a simplified geometry, is given in Ref.dication of the quantum origin of the phenomenon.
[31]. However, the timeiy, ~(uNg) 1 [54], which is here-
with identified as characteristic of collapse, does not account
for the enhancement af 1,5 Near the critical point. D. Minor role of a molecular condensate

In Fig. 3 we plot the scaling law56) (full line) derived Having obtained some insight into the early stages of col-
here and compare it with the experimental data My  |apse, let us discuss briefly how the present model may be
=6000 as reported in Ref$1,2] (small black points the  modified to explicitly account for the population of a mo-

tn~ (UN) ~* prediction(suitable scaledas given in Refs.  |ecular state. We refer the reader to Ré0,14,11 for fur-
[31,2] (dashed lingand the results of numerical simulations ther details.

reported in Ref[21] (large gray dots While all three theo-  The system of atoms and molecules at the Feshbach reso-
retical predictions may be considered satisfactory, lie  nant state may be described by a theory where the fundamen-
~ (uNo) ~* fails to describe the divergence Qb iapse@s the  tal degrees of freedom are an atomic fidhdx) (we use the
critical point is approached. The results of numerical simu-jmensionless amplitude introduced in the preceding Sec-

lations reported in Ref,.21] based on an improved Gross- tion) and a molecular field\(x). The Hamiltonian takes the
Pitaevskii equation tend to be systematically above the extgrm

perimental results. In a classical instability, the unstable
modes must grow from zero, while in a quantum instability, H=H siom™ Hmort+ Hpet Hint (57
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where The free part decouples from the atomic condensate, and the
effect of the driven part is to introduce an effective interac-
Hatom= Htrap+ Hokga- (58 tion among atoms, so that,q in Hpyga is replaced by

HereH,,, given in Eq.(12) describes the dynamics of free 2I'?
atoms in the trapHy4q accounts for the background inter- Uef+= Ubkgd ™ e(B)’ (66)
action between atom@hat is, very far from resonange

which is the familiar pattern that makes it possible to tune
bkgd 3yt 24,2 the scattering length. The effective scattering length vanishes
Py )
2 )f d*x 00, 9 BB, - 165.75 G[13] (see Fig. 1
_ o - We conclude that under this approximation, the number of
where[6] (recall that our sign convention is a positive scat-molecules—disregarding those already present indepen-

Hpkgd=

tering length for an attractive interaction dently of the atomic condensate—is
abkgd r 2 Upkagd Ueff
Upkgd=4T——, apkgd= 45089=Upyyq=0.1. (60 ~| =] N2 _ =29 _ ¢ 2
bkgd ang bkgd 0= Upkgd (60) Nimor~| - | Natom 22(B) T NZom-  (67)

Hmor describes the motion of molecules in the trap. We treaif N,,,,~16 000 andugss~ — Upkgd [6], then the molecular
a molecule as a particle of masb2whereM is the mass of  condensate becomes important WheB) ~ UpkgdNatom®ho
the atom subject to a potential 2 (where V is the trap =128 kHz. This regime was achieved in R¢6]. Under
potential seen by the atomiH5], so the frequency of oscil-  these conditions we cannot rely on the above approximation,
lations in the trap is the same for atoms and molecttgs.  but rather we must solve the model. This yields atom-
accounts for the energy difference between a molecule angholecule oscillations with a frequency set b§B).
two atoms In contrast, in the condensate collapse experirhghthe
magnetic field was driveabove B,,, with typical values
__ 3, at B=167 G. For these fields, the molecular binding energy is
Hoe S(B)f dXAAX). 61 close to 12 MHZsee Refs[13,5@), or 15X 10*w, Therefore
o ) . Nimoi~ 0.000N 40~ 80. This is less than the number of at-
Plots of the binding energy(B) as a function of the applied oms even in the earliest measured jetse Ref[1] and be-
field B are given in Refs[8,13]. Finally, Hi, accounts for |ow) suggesting that no major role is played by molecular

the formation and dissociation of molecules: recombination. This conclusion is consistent with the fact
that no oscillations in the number of particles in the conden-

Himzrf dBx(ATW2+ W T28)(x). (62) sate are see(sge[l] _and bglow. Itis intere;ting to observe

that the numerical simulations presented in R&f]] assume

oo . oo . aset of parameters chosen to display the effect most clearly,
The binding energy (B) is the crucial input parameter in ot attempting to be realistic.
the model. £(B)=0 at the resonance field=Byca This leaves open the possibility that the approximation
=155 G[13] and increases with largd’s. At values ofB  may break down because the atomic field is not slowly vary-
~156 G typical of the Ramsey fringes experim¢6f we g with respect toe 1. For example, the time it takes to
already have binding energies of the order of 10 KHz; this ischange the magnetic field froBy e, t0 Beyojpe iS probably
much larger than 100 Hz typical of motion in the trap, andf the order of 10us=8X 10740){1 [6]. This is a short time
thereforeH ,, is negligible (in the condensate collapse ex- .ompared te:~* under the conditions of the Ramsey fringes
periment[1] typical fields whereB~167 G, ands(B) was  gyheriment[6], but a rather easy stroll in the condensate
much largey. Under this approximation, thiull Heisenberg  o|japse experimerftL]. The next scale in which we expect
equation of motion for the molecular field the condensate to reathich is also of the order of the
p inverse atomic chemical potentias ty, [54,31, but this is
i—A=—g(B)A+ W2 (63  of the order of milliseconds and therefore way too long.
ot The conclusion is that formation or dissociation of mol-
ecules, under the conditions of the condensate collapse ex-
periment[1], is unlikely to have played a central role. More-
. over, in models where the molecular state is explicitly
A(r,t)=A(r,0)ei€t—iFJ dt’e'«t-t")w2(r t). (64)  included, itis still necessary to account for the quantum dy-
0 namics of the atomic field. This is done, for example, in Ref.
[14] by tracking the fluctuation two-point functions along
If the atomic field is slowly varying in the scale ef 1, then  with the condensates, or in Réfl1] by providing indepen-
the integral is dominated by the upper limit, and simplifies todent equations for the anomalous atom pair amplitude. Reso-
r nance of molecular field with the condensate alone, though
_ T2 remarkably successful in the later experiments, cannot ac-
AN =Arreel 1) + € TAY. (65) count for the phenomena of this experiment. For the experi-

may be solved analytically
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ment of Donley and co-workefd,2] the dominant qualita- Number in condensate

tive features are determined by the dynamical vacuum 18000
squeezing mechanism proposed here; including a molecula 16000
field can only provide a minor quantitative improvement. ®
(]
14000

IV. EVOLUTION OF FLUCTUATIONS: BURSTS AND JETS 12000

In the preceding section, we were mostly concerned with
identifying the factors that can render the condensate un 10000
stable. In this section, we shall consider the quantum evolu- 8000 °®
tion of fluctuations, as a test field riding on the collapsing
condensate extracted from experiment. The basic dynamice 6000 A °®
equations are, from before, Eq81)—(33), where nowbg is time
assumed to have both space and time dependence. The initi.. 2 4 6 8 10 12

state is defined by the condition that0 for t<0; we shall FIG. 4. The evolution for the number of particles in the conden-

take it to be the particle vacuurhﬁ)), which |s_def|ne<_j by sateN(t) as a function of timémeasured in millisecongisssumed
#(x,0)/0)=0 everywhere. Rather than seeking a rigorousi the calculation of the number of particles in a jet. For compari-
solution, we wish to understand the structure of the problenyon we have superimposed the data from Fib) af Ref.[1]. The

in order to display the extent to which the phenomenology ohgreement is satisfactory for our purposes, as we shall not consider
condensate collapse is determined by fundamefyal the evolution beyondr,,,o=12 ms nor the formation of a rem-
simplg quantum dynamical effects such as parametric ampant.

plification and particle creation. With this goal in mind, we

shall make some physically motivated simplifications. S .
We have already seen that it is possible to introduce 48) above. Therefore, the approximation may be improved

mode decomposition of thé operator based on the eigen- y adjustingx according to the range of modes where it will

functions of H— Eq]H,(;. This shows that the preconceived be applied. We shall adopt this practice in what follows.
notion that fluctuations will react only to the local state of the
condensate is flawed; the relevant modes are nonlocal and
can sample conditions over a large portion of the trap.

For short wavelengths, we expect these eigenfunctions  We now proceed with the quantitative analysis of conden-
will approach trap eigenmodes, sinde-\ ~2>2u®2. Also  sate collapse. We assume a given evolution extracted from
the fact that particles in bursts are seen to oscillate with thexperiment for the number of particles in the condensate and
trap frequencieg1] suggests that their dynamics is deter- analyze the evolution of fluctuations treated as a test field on
mined by the trap Hamiltoniafsee below. Of course, the this dynamic background.

A. Evolution of fluctuations up to teojapse

trap eigenmodes would also be eigenfunctionsigf; if this Concretely, we shall consider evolutions where the num-
operator andH commuted. Now, since ber of particles in the condensate remains constant from the
2 ) time t=0 when the scattering length is switched to a nega-
[H,He] = uiVodg+2V OV, €8 tive value up to some timé;japse; and decays exponen-

tially from then on(see Fig. 4. In the actual experiments the

we see that we may disregard the commutator when the COondensate does not evaporate completely, but the number of

EZ?ﬁa;fuzlr?vivrl]yt\ﬁzrﬁlg||gaggg rtehsepf;;igfhsecg?ée%?n;hrgOcdoensparticles in the remnant is much smaller than the initial num-

densate is,,, and this condition will hold for almost every ber of atoms in the condensate, and is therefore negligible at

mode. Thus we shall make the approximation of assuming H1e early tlmes when the approximation of a homogeneous
homogeneous condensate. The amplitude of the homogg_ondensate 's_ valid. o . )
neous condensate will be chosen to enforce the onset of in- L€t US begin by considering the evolution up to the time
stability. Since we expect the lowest trap mode to becom@f collapset qjapses OF the waiting period. LeN, be the
unstable wherN=N.,=«/a (in units wherea;,=1), we initial number of particles in the condensate, ang,

approximate = k/Ny be the corresponding critical scattering length. Trap
eigenfunctions are labeled by a string of quantum numbers
2udi= 3) w,No(t), (69 ﬁ=(nz,nx ,Ny). The eigenvalues of the trap Hgmjltonian are
K (with the zero energy already subtradtdel;=n-w where

whereN,(t) is the instantaneous total number of particles in®=(®z,©,,®,) andn- w=w,n,+w,(n,+ny). We choose
the condensate. For constaNp, this yieldse~w,(a/a,,  the eigenfunctiongj; to be real.
—1)¥2 for the time constant of the growing mode, which is L€t us expand
close to the more rigorous estimate E§5), above.

In practice,x ! in Eq. (69) is a measure of the overlap ,/,:2 an(t) ya(r), (70
between the condensate and the excitation modes, as in Eq. n
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&= ci(ys, (72)
7= bi() . (72)
Then
ci=1i(a;+ab), (73)
oy
bn_E(an_aﬁ)a (74)
d _ ) (a) )
ab = a7 Cr\ (75)
dt =E;b;. (76)

We see that there are two kinds of modes, stéideillatory,
or thawed modes ifE;>(a/a.;) w,, and unstablégrowing,

or frozer) modes if not. We shall consider each kind in turn.

B. Stable modes and bursts

First consider the case whéig>(a/a.,) w,. We get

1 1
ci(t)= E(a,;+ aE)(O)COSw,;tJr T(aﬁ— aE)(O)sinw,;t,

Xn
(77)

1 1 _
bi(t) = 5 (a5 —ap) (0)coswgt— 5 xa(as +ag) (O)sinwgt,

(78)
where
wi= \/ Ea[Ea—(— w,|=Xis, (79
Cr
N e (80)
An Acr Eﬁ.
So
aq(t)="fi(1)a;(0)+gs(H)ak(0), (8D)
where
a \w,|Sinw;t
fa(t)=cosw;t+|2—| —|—|— , (82
Acr E.l 2ixs
()= — a |, sinwgt 83
9 acr E 2|Xn .

Observe that

PHYSICAL REVIEW A 68, 043625 (2003

a\w 2
[z
Acr E;
2) .
( a wz) sirfwt
Acr Eﬁ

[f(D)]%=gr(D)]?= coszart+{

=1, (84
e (84)

as required by the commutation relations. Although we as-
sume vacuum initial conditions, these modes do not remain
empty. The density

A =2 gar(albast)=2 vir|gst]?

1 Slnzw”t

“8la,,

2E¢

(85

acr n
We see that the density has a constant term and an oscillatory
term. In our view this oscillatory term is responsible for the
appearance of bursts of particles oscillating within the trap.
This point is worth some elaboration, as it will make clearer
the contrast with the unstable modes to be discussed below.
Let us approximate the amplitudes;(r) by their WKB

forms

van)= 11 wi(ro), (86)
A {s z (87)
I r)= nI
\/E 2!
where
S = f;dxmx» 9

Pi=V2njw;— wir;. (89

After expanding all trigonometric functions, we see that the
oscillatory part is a linear combination of terms of the form

exp{Zi E S—ow;t
in all sign combinations. If we look at the density at a given

point and time (,t), we see that the modes that contribute
effectively are those for thdtn the limit y;—1, E;> w,)

] (90

wj =0. (91

This equation describes a particle that moves along a classi-
cal trajectory in the trap potential, starting from the origin at
t=0 with momentunp;(0). If we include the phase shift in
computing the saddle point, there is a time delay, but it is the
same for all particles.

We conclude that the oscillatory part of the density de-
scribes a swarm of particles moving along classical trajecto-
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ries in the trap potential. These trajectories return to the ori- Observe that in this picture several conspicuous features
gin at multiples of the inverse trap frequencies, thusof jets become obvious. Jets may only appear if the turn-off
producing a surge in the local density, which becomes largéme 7,,,. iS earlier than the formation of the remnant.
enough to be seen by destructive absorption imaging. Thesence the condensate is stable again, there are no more frozen
particles constitute the so-called bursts observed in the eXnodes to thaw. On the other hand, jets will app&s ob-

periment of Donley and co-workef4,2]. served for 7e,o1e<tcoapser When the condensate has not
yet shed any particles. Also jets must be less energetic than
C. Unstable modes and jets bursts, since they are composed of lower modes. Because of

Let us now consider the opposite caBg<(a/a.)w,. (heir relative weakness, treating them as test particles riding
Formally we may obtain the relevant formulas from the laston the dynamic condensate as is the approximation adopted
section with the replacemegt=i9;, w;=io;, thus trans- here(‘test field’) works better for jets than for bursts. A more
forming coswit—coshoit and sinwt—i sinho;t. We get accurate depiction of the dynamics of bursts may require
consideration of the backreaction of the fluctuations on the
condensate.

1 1
cr(t)y= E(a,;+ aE)(O)COShfﬁt-ﬁ- ﬁ(aﬁ— aE)(O)sinhoﬁt,
n

(92 D. Beyondtggjjapse: Thawing
be(t) = i(a*—at)(O)cosh " The main physics we presented in the preced_ing section is
= o5p\%n 9 Tn that the amplitude for a normal mode in the excitat{finc-
tuationg of the condensate evolves as a harmonic oscillator
with a complex frequency dictated by the dynamics of the
condensate. Parametric amplificati@r, in a quantum op-
_ tics, squeezing of the fluctuations populates the modes
So again above the condensate, even from a vacuum state originally,
+ manifesting as bursts or jets. Thus in our view the specific
an(t)=fr(t)as(0) +gn(t)a(0). (949 phenomena arising from the collapse of a BEC formed from
a dilute Bose-Einstein gas arises from the squeezing of
But now (vacuum fluctuations by the condensate dynamics.

Let us now discuss the behavior of fluctuations beyond
teollapse: When the number of particles in the condensate,
and therefore the instantaneous frequency of the excited
modes, become time dependent. As in the preceding Section,
® we shall assume nevertheless that the condensate remains
_Zsinhgﬁt_ homogeneous, thereby confining ourselves to the early stages
En of collapse.

(96) For concreteness, let us assume that the number of par-

Physically the difference is huge. In the first place, thethIes m_the cond_ensate remains constaigt=No=16 OOQ
up to t=teoapse=3 Ms, and then decays exponentially

density is growing exponentially. But unlike the previous — ) )

case, there is no oscillatory component. While the actualNo(t)=NoeXd —(t—tcoiapsd/ 7], With 7=6 ms (see Fig. 4
number of particles is increasing, there are no surges in th&h® mean frequency =80 Hz of the trap corresponds to a
density caused by the sudden constructive interference dgmperaturefiw/kg=52.5 nK. The actual trap frequencies
many modes. In particular these particles do not contribute tsePorted in Ref[1] wragia=110 HZ andw,yia=42.7 Hz

the central peak in the density distribution. In this sense, thegorrespond to temperatures 28.0fial) and 72.162(ra-
cannot be seen by destructive absorption imaging. Becausda)) nK. These are relatively high with respect to the sample
these particles do not oscillate in the trap, in the sense abovémperature of 3 nK. For this reason the initial number of
we say these modes are frozen in the same sense used in f@fticles above the condensate is negligible, and we may
theories of cosmological structure formation, i.e., that fluc-2ssume that we are dealing with particle creation from effec-

tuations in an evolving universe are said to freeze upon leaively the vacuum. This is the rationale behind calling this

ing the horizor[44]. process “squeezing of the vacuum.” We shall assume the
However, these modes come alive @f,,o, when the Scattering length is brought t@=36a,. We shall approxi-

scattering length is set to zero. Now they become ordinarynate the effect of the condensate on the fluctuations by a

trap modes, and oscillate in the trap in the same way as thegonstant level shift as in E¢69). The best fit to the experi-

burst described above. To the observer, they appear as a nédgntal data is obtained for=0.46, which is satisfactorily

injection of particles from the core of the condensate, whictelose to the experimental value of 0.55.

makes up the so-called jets. The sudden activation of a fro- Shifting the origin of time totco)iapse for simplicity, we

zen mode by turning off the particle-particle interaction maywrite Ng(t) =Ngexp(—t/7). After expanding in trap eigen-

be described as a “thaw.” modes as in the preceding Section, we obtain the equations

1
+ 5Ot al)(0)sinhot. (93)

f-(t) = coshot+ (1-9%)sinhait, (99

n

-1 5 i
gn(t)= 55 (1+97)sinhopt= —

n n

acr
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FIG. 5. (Color onling A schematic depiction of the evolution of FIG. 6. The evolution of the number of particles in a jet as a
the proper frequencies of different modes in time, both in arbitraryfunction of the timet (measured in milliseconils for N
units. Short-wavelength modes remain stable throughout, but the 16000 o —11800H|vze o =427 Hz. a—36a. and "(’

- , radial — ’ axial ™ . » a— 01

sudden change in proper frequency when the interaction is swnchego46 [see Eq(69)]. The evolution ofN(t) in time is depicted in

on induces particle creation in them. These particles are perceivelgig. 4. To provide a visual reference we have superimposed the data
?S bt:ﬁrsts.t.:_?;g-wavglengtth ?OdTS tactuallyhbe(t:ome léns‘f(ableth. of Fig. 6 of Ref.[1]. The discrepancy between theory and experi-
rozen until the condensate has lost enough atoms. During thig, ., beyond,,,,e=6 ms may be attributed to an overestimation

period they are ampllfled._ When th_ey become stable again, they a8t the condensate-noncondensate coupling in neglecting the change
seen as a secondary emission or jet. .
in the shape of the condensate.

is due to the fact that, by not considering the shrinking of the
condensate, we are overestimating the overlap between the
condensate and the fluctuations, thus delaying the thaw. It
d nevertheless reproduces the overall slope of the particle num-
gt Cn= Enbs. (98) ber with 7¢,o1,e, Which is quite remarkable considering the
simplicity of the model.
Therefore The see-saw pattern follows from the discreteness of the
modes. Modes thaw at discrete tint§s. Between one and
aw, the next, occupation numbers of the unstable modes are in-
Ei—| = |exp—t/7)|c;=0. (990  creasing, and so the number of particles in the jet is a grow-
a ing function of 7o,01,e- When the next stabilization occurs,
the particles in the now stable mode no longer contribute to
scribed abovéan exact solution is provided in AppendiX.B Igtgr jets, and thg particle number in the jet decreases by a
If E:>(aw,/a), the mode is always oscillatory. IE: finite amount. This pattern accounts for the fact that a jet
nT TS, } "N from a laterTg,q,e May be stronger than earlier ones, and
<(aw,/a), the mode is frozen dtjjapse, PUt thaws when 150 for the large variation in the number of particles in jets
exp(—t/7)~Ejalaw, (see Fig. % During the frozen period, with similar values ofrg,),¢- It Should also be remembered
the modes are amplified, but they only contribute to burstshat we are computing the expected number of particles, but
after thaw. If the evolution is interrupted while still frozen, that, in the highly squeezed state which results from the fro-
they appear as a jet. zen period, the fluctuations in particle number are compa-
We therefore conclude that the numidgg, of particles in  rable to the mean number itself.
a jet at timerg, o), IS €ssentially the total number of particles
in all frozen modes at that time. If we write as before

z

aw
_)exq—tlr)]c,;, (97)
a

P TR

E,—

d2
@cﬁ E;

This equation clearly displays the two kinds of behavior de

V. CONCLUSION

ar;(t)=fr;(t)a,;(O)+g,;(t)aE(0), (100 In this paper, we have applied insight from the quantum
field theory of particle creation and structure formation in
then cosmological spacetimes and the theory of second-order
phase transitions to a specific scenario of controlled collapse
No(t)= -(1)2]. 101 of a Bose-Einstein condensate, as observed in the experiment
jer(V EHS(awZ%exp(ft/T) 9t (103 to Donley and co-worker§1,2]. We have described these

phenomena as resulting from particle creation from the
This is plotted in Fig. 6, from the exact solution in Appendix vacuum, induced by the time-dependent condensate. This
B, with the parameters given above, and compared to théme dependence squeezes and amplifies the field operator
corresponding results as reported in R&l. We see that the describing excitations above the condensate. A key concept
agreement is excellent at early tim@gp to about 6 ms For  in our analysis borrowed from theories of cosmological
later times, the model overestimates the jet population. Thistructure formation is the drastic difference in the physical
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late and are rather impervious to the condensate, while those

below (frozen modesgrow in time and get amplified, in a APPENDIX A: THE CLASSICAL GPE

way similar to the growth of fluctuations during spinodal ) ] . )

decomposition. As the condensate stabilizes and the collapse In this appendix we shall consider the purely classical

rate decreases, the frozen modes begin to thaw. The appe&PE, meaning that we shall disregard any backreaction from

ance of oscillatory modegn second quantized language fluctuations. The conclusion of this analysis is that for short

described as particle creation appearing in jets and bursts, #§1es of the order of 1 ms, it is possible to consider the

described in detail above. modulus of the condensate as time independent, and its
In order to focus on the key ideas we have adopted #hase as space independent. This observation will lead to a

number of simplifying assumptions. We take the condensatgubstantial simplification of the equations for the fluctuations

evolution as a given input from the experiments, rather thai this regime. _

deriving it from fully self-consistent equations. We have Let us begin from the equations

treated excitations within the Popov approximation, which

improves on the Hartree approach but is known to break @+ }(V@)Z_iH(DO_i_ ud2=0 (A1)
down as the number of particles above the condensate in- a2 @, o

creases. We have neglected the coupling between different

excitation modes, considering only the coupling of each to aPg 1, . B

the condensate. ot TVOVO,+ E(V 0)®o=0. (A2)

These simplifications render certain aspects of the prob-
lem more amenable to others because they are rather insél-is suggestive to rewrite these equations in the following
sitive to the assumptions. The scalingtgfjapseis shown to  way. The operator
depend on the behavior of a few modes setting the charac-
teristic time scale of the problem—therefore the prediction is
not affected by the underestimation of the coupling to other
modes.

Even within these simplifications, we have obtained goodooks a lot as a material derivative with respect to a fluid
quantitative predictions for the onset of instability, the scal-flowing at each point with velocity =V 0. It seems natural
ing of the waiting timet,apse (When the condensate implo- to change from the Eulerian coordinateto Lagrangian co-
sion really begins after the inversion of the scattering lengthordinatesq. That is, for giveng we define the functiorx
with the scattering length, and also for the number of par=x(q,t) as the solution to the system
ticles in a jet as a function of.,,,e, When the interaction
between atoms is switched off. ax(q,t)

Another success of the model is to provide a simple ex- ot
planation for the widely different appearance of bursts and d
jets. As remarked earlier, jets may only appear if the turn-offopserve that
time 7¢,01,e IS €arlier than the formation of the remnant,

Dt=%+(V®)V (A3)

=V,0(x(q,t),t), x(q,00=q. (Ad)

because once the condensate is stable again, there are no d
more frozen modes to thaw, but, on the other hand, jets will Dt:ﬁ (AS)
appear forre,o1,e<tcoiapser When the condensate has not q
yet shed any particles. Also jets must be less energetic thagis also convenient to define the fields
bursts, since they are composed of lower modes.
Considering the success these simple ideas and light cal- X
culations brought about we believe our approach might have J =— (AB6)
captured the essence of the physics behind these phenomena. aq®

The physical paradigms we used in bringing forth these ideas . N . , N

also suggest that understanding the basic mechanism of ir@nd their inverseg;". At any given time, the“ are a set of
portant processes in cosmology, critical dynamics, and BoséeUrvilinear coordinates, with metric

Einstein condensation may share more than a superficial .

ground. y P ds’=g,zdq"dcf, (A7)

Uup= 5,333 (A8)
ACKNOWLEDGMENTS

) . ) . . _ The wave function transforms as a scalar under this coordi-
We acknowledge discussions with Bill Phillips, Keith nate change. We also define

Burnett, Ted Jacobson, Stefano Liberati, and Eric Bolda. We

thank E. Donley and S. Kokkelmans for allowing us access J:detJia_ (A9)
to unpublished data. This research and E.C.’s visits to UMD

were supported in part by NSF Grant No. PHY98-00967, eéDbserve that

043625-13



E. A. CALZETTAAND B. L. HU

EA| %0 )
—| =33 —=JV 0.
at q JqeIx

The volume element is'gd®q,g=detg,z=J? and the La-

placian

1
—=0a\9g" 9.

Vg

This suggests writing

P
by=—
"3
to get the equation
Py
at

Writing the dynamics this way, the role of the phases is hid-

(A10)

(A11)

(A12)

(A13)
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This term is therefore negligible againsd)é if g>1 orq
<(tyNou) ~%; it is small everywhere ift<(/Nou) ~*. This
is enough to justify the formal procedures in the main body
of this paper.

The equation that defines the coordinate change ftom
g becomes

ax(q,t)
ot =2tuqdj(q), x(q,0)=q, (A21)
q
with the solution
x=q[1+t?u®3(q)]. (A22)

So again, we see that during the first millisecond, we may
approximatex=q everywhere. This establishes the conclu-
sions anticipated at the beginning of this section.

APPENDIX B: EXACT SOLUTIONS OF THE MODE
EQUATION IN THE DYNAMICAL CASE

In this appendix we shall derive closed-form solutions for

den in the time dependent curvilinear coordinate systemthe evolution equations for quantum fluctuations after

since we get

N,
Dy=D(q)= PETN i

where we are using the fact that initially the condensate cor-

responds to a noninteracting gas.

To be definite, consider a situation wily,=16 000 and

a=30a,. We obtain
a
aho

Since we expect that, at least initialli ®y~

ud? term. Concretely, observe that

J0 0

il e 2
at |* atq (VO)~

So the equation for the phase reads

e 1 J @
———(V®)2—£H—O Lpz-o0,
it G
Approximate
0(q,t)=uo—tjud (q)——}

Observe that
VO =2tuq®3(q).

So

3(VO)2=(2t2ug?®j(q) ) u®j(q).

(A14)

(A15)

3®dy/2, the
dynamics of the phase near the origin is dominated by the

(A16)

(A17)

(A18)

(A19)

(A20)

tcoHapse
d aw,
gt —b;=—|E;—| = |exp —t/7)|C;, (B1)
t a
i C= Enbs. (B2)
Therefore
d? aw,
@CHJFEH Eq— = exp(—t/7)|c;=0. (B3
Call
{=goel127), (B4)
Therefore
d ¢ d BE
dt~ 2 dg B9
and
1 a £\?
it B B | 222 —) c:=0, (B6)
gdggolg T )N\ |5
o)
d? +1 d 47r%aw,E; 472E,2; 0. 87
e DAl _ -
dg2 ™" ¢dg ags '
Choose
47%aw,E;;
(=" (B8)
a

to find (recall that thec; are self-adjoint
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Ch= aﬁ|2i7E5(§)+aE|—2iTEr;(§)- (B9)

We see the two basic behaviors discussed in the preceding
section. Fot<r, {>1, the Bessel functions behave as real
exponentials. When—o, {—0, the modes oscillate with

frequency* E;. Modes with E,;>aw2/§ are never frozen.

Lower modes are frozen a0, but thaw when~27E;,
or

aE;
Pl Pp—y (B10)
aw;,
The b;; coefficients are given by
1 dcn —¢ dc;
b= . B11
"E. dt  2E.; Al (B1Y
The ¢, andb; coefficients must be continuous, so
il gire (o) + all _gie(L0)=Ci, (B12)
—{o . d t d .
2E-, and—§|2irEﬁ(§o)+aﬁd—§|—2iTEr;(§o) =
(B13)

PHYSICAL REVIEW 88, 043625 (2003

e
Wi(¢,80) = m |2|TE(§)d§| 2i7£:(£0)

d
_IZiTEﬁ(g)d_glﬁrEﬁ(gO)}v (B19

d
W,(4,80)= ac W(¢Z,2o), (B20)

d
W;3(4,40)= W1(§ o). (B21)

Then
—  2E;7 —

=W;({,{o)Crt —OW(§,§o)bﬁ, (B22)

2E;T —
br= Wa(¢,Zo)Cit Wz(éu.(o)bﬁ}. (B23)
2E;T 0
Cci==(an+al); g»:i(;_gt) (B24)
nToln n’’ n9j n n’?

where cn and b are the results of the evolution up to . () =W,(¢, §o) 2 W(g §o)b _ i [Ws(é“ §o)C
n n

tcollapsm namE|y:

_ 1 t
Cﬁ=§(aﬁ+ aﬁ)(O)COShaﬁtcollapse

1 (a;—ah)(0)

+ z 9- Siﬂho-,;tco“apse, (814)
n
_ 1 t
bﬁ:E(aﬁ_aﬁ)(O)COShaﬁtcollapse
1 + )
+ Eﬁ,;(a,;Jr a:)(0)sinhotcoiapse: (B15)

Using the Wronskian

d d
I2irEﬁ(§O)d_§| ~2iE;(Lo) | —2iTEr;(§o)d_§ 21 7£,({o)

_sinh2w 7E;

=—2i wle (B16)

we get

i, d — 2Eq7—
aﬁ:m d_éal72iTEﬁ(§0)Cﬁ+I72iTEn‘(§O)§_Obﬁ -
(B17)
Call
o
2sinh 27 7E;

— i (Daize(L0) ],

W(Z,Zo)= [12i7e-(O1 -2i£-(L0)

(B18)

o 2EqT
2EqT —}
+ o)brl. (B25)
Lo
So, writing
a;="fqa;(0)+g:ak(0), (B26)
then
aa(t)=fa(t)aa<0)+ga(t>a5<0>, (B27)
fa(t)= wl(z Lo (f5 fimg?)
4
-
4E ( +gn)
‘ —Wa(¢,Lo)(fi—g%), (B29)
2§ 2 0 n
1 iE;T
gn(t)= Wl(f 50)(f +gn)+ Zo W(f fo)(f g)
L Wis(¢, §o)( +gn)
 4E;r

+ ivvzus,zo)(?g —g5)- (B29)

2{o

This result is used to build the plot in Fig. 6.
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