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Bose-Einstein condensate collapse and dynamical squeezing of vacuum fluctuations
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We analyze the phenomena of condensate collapse, as described by Donleyet al. @Nature412, 295 ~2001!#
and N. Claussen@Ph. D thesis, University of Colorado, 2003~unpublished!# by focusing on the behavior of
excitations or fluctuations above the condensate, as driven by the dynamics of the condensate, rather than the
dynamics of the condensate alone or the kinetics of the atoms. The dynamics of the condensate squeezes and
amplifies the quantum excitations, mixing the positive and negative frequency components of their wave
functions thereby creating particles that appear as bursts and jets. By analyzing the changing amplitude and
particle content of these excitations, our simple physical picture explains well the overall features of the
collapse phenomena and provides excellent quantitative fits with experimental data on several aspects, such as
the scaling behavior of the collapse time and the number of particles in the jet. The prediction of the bursts at
this level of approximation is less than satisfactory but may be improved by including the backreaction of the
excitations on the condensate. The mechanism behind the dominant effect—parametric amplification of
vacuum fluctuations and freezing of modes outside of horizon—is similar to that of cosmological particle
creation and structure formation in a rapid quench~which is fundamentally different from Hawking radiation
in black holes!. This shows that Bose-Einstein condensate dynamics is a promising venue for doing ‘‘labora-
tory cosmology.’’

DOI: 10.1103/PhysRevA.68.043625 PACS number~s!: 03.75.Kk, 03.75.Gg
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I. INTRODUCTION

We introduce a perspective in the analysis of the phen
ena of condensate collapse, described by Donley and
workers @1,2#, by focusing on the behavior of fluctuation
above the condensate, rather than the condensate itsel
show that the condensate dynamics squeezes, amplifies
mixes positive and negative frequency components of
wave functions of the condensate excitations. In addition
providing a good qualitative understanding of the gene
picture, our theory also produces precise predictions, spe
cally, on the critical number of particles at the first instan
when the instability sets in, the scaling of the waiting tim
tcollapse, and the number of particles in a jet. In this rend
tion we point out the analogy between the evolution of qu
tum excitations of the collapsing condensate and the vac
fluctuations parametrically amplified by the backgrou
space-time in the Early Universe, suggesting a new venue
‘‘laboratory cosmology.’’

A condensate formed from a gas of cold~3 nK! rubidium
atoms is rendered unstable by a sudden inversion of the
of the interaction between atoms. After a waiting tim
tcollapse, the condensate implodes, and a fraction of the c
densate atoms are seen to oscillate within the magnetic
that contains the gas~see below and Ref.@1#!. These atoms
are said to belong to a ‘‘burst.’’ In the experiments describ
by Donley and co-workers@1,2#, the interaction is again sud
denly turned off after a timetevolve . For a certain range o
values oftevolve , new emissions of atoms from the conde
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sate are observed, the so-called ‘‘jets.’’ Jets are distinct fr
bursts: they are colder, weaker, and have a distinctive d
like shape.

The experiment of Donley and co-workers takes full a
vantage of the tunability of the effective atomic interacti
due to a Feshbach resonance characteristic of85Rb @3,4#. The
resonance is caused by the presence of a bound state w
binding energy may be tuned by means of an external m
netic field. In later experiments@5,6#, observed fluctuations
in the number of particles in the condensate have been
explained as arising from oscillations between the us
atomic condensate and a molecular state@7–12#.

These oscillations were observed for magnetic fields
the order of 160 G, where the effective scattering length is
the order of 500a0 ~and positive! (a050.529310210 m is
the Bohr radius! and the frequency of oscillations is of hun
dreds of kHz@5,6#. By contrast, in the experiment of Donle
and co-workers@1# typical fields were around 167 G, th
scattering length was only tens of Bohr radii~and negative!
and the frequency of atom-molecule oscillations may be
timated as well over 10 MHz@13#. Under these conditions i
is unlikely that the molecular condensate plays any import
dynamical role, and indeed no oscillations are reported in
original paper~for the opposite view, see Ref.@14#!. For
these reasons and to highlight the mechanism particula
this experiment, we shall not include explicitly a molecul
condensate in our model but discuss in detail the one-fi
model. However, if needed, this may be done in a ve
simple way, by including a second field to describe mole
lar destruction and creation operators@9,10,14#. We will
elaborate on this point in a later subsection

There is a vast literature attempting to provide theoreti
explanations of collapsing condensates@15–21#. In addition
©2003 The American Physical Society25-1
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to speculations that collapse is due to molecular oscillati
as alluded above~which we view as of secondary impo
tance!, the most serious theoretical attempt is based on
Gross-Pitaevskii~GP! equation with explicitly introduced
nonlinear terms to account for multiparticle interactio
@21,22#. We will show that the primary mechanism respo
sible for the main features of the experiment of Donley a
co-workers@1,2# originates from the dynamics of quantu
fluctuations around the background condensate field~s!. We
start with the Heisenberg operator for the many-body w
function and split it into ac-number part describing the con
densate amplitude and aq-number part describing collectiv
excitations~not individual atoms! above the condensate. W
then derive an evolution equation for the wave-function o
erator of the quantum~noncondensate! excitations under an
improved Hartree approach, the so-called Popov approxi
tion @23–26#.

In this paper, we use a ‘‘test field’’ approximation, b
adopting~rather than deriving! the specific evolution of the
condensate extracted from the experiment as given and s
the dynamics of the excitations riding on this dynamics. N
that the experimentally given condensate dynamics is dif
ent from the mean-field dynamics obtained from a solut
of the GP equation, because the former includes the dyna
cal effects of the fluctuations. Finding a self-consistent so
tion of the evolution equations for both the condensate
its fluctuations is called the ‘‘backreaction problem.’’ It ha
been studied in detail in problems of similar contexts such
cosmological particle production~see below!. Theoretical in-
vestigations for the Bose-Einstein condensate~BEC! fluctua-
tions dynamics can be found in Refs.@7,27,28#. The squeez-
ing of quantum unstable modes and its backreactions on
condensate have been considered before, e.g., as a dam
mechanism for coherent condensate oscillations@29#, and
also applied to the description of condensate collapse@30–
34#. Field-theory methods have recently been applied to
problem of formation and stability of Bose-Einstein conde
sates @35,36#. Fluctuations have also been considered
Góral et al. @37# and Graham and co-workers@38#. Our work
differs from theirs in the emphasis we place on the beha
of the quantum excitations as a consequence of conden
dynamics.

Particularly relevant to the present work is Ref.@31#,
where condensate collapse is analyzed from the poin
view that the physics is mainly due to the dynamics of qu
tum fluctuations, the same view as we hold here. There,
trapping potential is replaced by a normalizing box, who
volume is eventually taken to infinity. Our analysis in Se
II and III is for a more realistic geometry, which enables
to compare quantitatively to experiments. The analysis
bursts versus jets given in Sec. IV however originates from
concept inspired by cosmological processes.

To the extent that many phenomena observed in con
tion to the collapse of this nature are essentially the resu
a quantum fluctuation field~the noncondensate! interacting
with a time-dependent background~the condensate!, as we
believe it is, there is a close analogy with similar processe
the Early Universe, specifically, vacuum particle creat
from a time-dependent external field@39# or in a curved
04362
s

e

-
d

e

-

a-

dy
e
r-
n
i-
-
d

s

he
ing

e
-
y

r
ate

of
-
e

e
.

f
a

c-
of

in

background space-time@40,41#. ~For a squeezed state depi
tion of this process, see, e.g., Ref.@42#, and references
therein.! One could view condensate collapse as a labora
realization of cosmological particle creation during quenc
ing. ~Note this is not the physical process behind black h
particle creation, as in the Hawking effect, much attent
drawn to its detection in BEC notwithstanding@43#.! In this
process there is a competition between two~inverse! time
scales, the physical frequency of the mode under consi
ation and the inverse collapse~expansion! rate of the con-
densate. In cosmology the inverse expansion rate is
Hubble constant for the background space time. While
mode whose physical frequency is higher than the Hub
constant, we refer to it as ‘‘inside the horizon,’’ and its b
havior is oscillatory. When the converse holds, the mode
‘‘outside the horizon.’’ They are depicted as ‘‘frozen’’ be
cause they do not oscillate~see below!, but are amplified
@44#. This amplification is largely responsible for the o
served primordial density contrast in the Universe@45#.

In the condensate collapse problem, the role of
‘‘Hubble’’ constant is played by the inverse growth~expo-
nential! rate of the most unstable mode of the condens
which is determined by the instantaneous number of parti
in the condensate. Modes whose natural frequency is gre
than the corresponding scale are relatively impervious to
dynamical condensate, but when the converse holds, co
quences are drastic. When the exponential growth is
dominant factor, the mode is frozen; instead of oscillating
is being amplified, a process that is analogous to the gro
of fluctuations during spinodal decomposition@46#.

In the same way that modes that left the horizon dur
inflation return during the radiation and matter dominat
eras, giving rise to acoustic oscillations, as the unstable c
densate sheds its atoms and approaches stability, the ba
frozen modes narrows: we say that modes ‘‘thaw’’ as th
turn from exponentially increasing to oscillatory behavio
The crux of the matter is that only oscillating modes a
detected through destructive absorption imaging~see below!.
Whenever a mode thaws, it is perceived as if particles w
being created. In the conditions of the experiment the ini
number of actual particles above the condensate is ne
gible, and we may describe the phenomenon as particle
ation from the vacuum.

To summarize, the key idea in our understanding of
phenomena associated with a condensate collapse is tha
dynamical background field of the condensate squeezing
mixing the positive and negative frequency components
its quantum excitations, thereby creating particles from
vacuum. The point of view of this work may be easily inco
porated in a first-principles approach as taken in, e.g., R
@47–50#. The remarkable analogy between condensate
lapse and quantum processes in the Early Universe and s
odal decomposition in phase transitions may stimulate n
related experiments in BEC, to be carried out to addr
these problems in cosmology and condensed matter phy
@51#.

This paper is organized as follows. In Sec. II we brie
review the phenomenology of condensate collapse and se
the basic mathematical model. In Sec. III we give a disc
5-2
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BOSE-EINSTEIN CONDENSATE COLLAPSE AND . . . PHYSICAL REVIEW A68, 043625 ~2003!
sion of the onset of instability and of the scaling of the wa
ing time tcollapse with the scattering length. In Sec. IV, w
turn to a discussion of bursts and jets, based on the dis
tion between frozen and thawed modes. By postulatin
specific condensate evolution~extracted from the experi
ment! we obtain quantitative predictions for the number
particles in a jet as a function of the timetevolve ~when the
scattering length is brought to zero!. Our results are summa
rized in the final section. A few technical details are left
the appendixes.

II. THE MODEL

A. An overview of condensate collapse

In the Donleyet al.experiment@1# a gas ofN 85Rb atoms
at a temperature of 3 nK is prepared in a state where t
behave essentially as a free gas within an anisotropic
monic trap~see Figs. 1 and 2!. The trap has a cylindrica
geometry @let r[(r,w,z) be the usual cylindrical coordi
nates, withw being the azimuthal angle#; the trap frequencies
are n radial517.5 Hz (v radial52pn radial5110 Hz) and
naxial56.8 Hz (vaxial542.7 Hz). At timet50, the scatter-
ing length a ~see below! is suddenly turned to a negativ
value2acollapse. This configuration is known to be unstab
whenever the numberN0 of atoms in the condensate excee
kaho /uau, whereaho is a characteristic length of the trap
The coefficientk was reported ask50.46 @52#, but later
measurements suggest it should be raised tok50.55 @2,13#.

For N056000 atoms, the instability threshold is report
at uau5acr55.12a0, wherea050.529310210 m. Therefore
aho55.63104a05331026 m. If we write aho

2 5\/Mv and
introduce the atomic mass of 85mP;1.3310225 kg and\
51.05310234 Js, this corresponds to a frequencyv
590 Hz. This agrees well with the geometric averagev
5(vaxialv radial

2 )1/3580 Hz. It follows that tho5v21

512.5 ms.
In spite of the instability, over a timetcollapse there is no

significant decay of the condensate.tcollapse depends very
strongly onacollapse ~see below!. After tcollapse, the number
of atoms in the condensate falls exponentially. If left to itse

FIG. 1. ~Color online! Effective scattering length as a functio
of applied magnetic field~unlike in the body of the paper, we follow
here the usual sign convention!. The scattering length is measure
in multiples of Bohr radiusa050.529310210 m. The magnetic
field is measured in Gauss. In the experiment by Donley and
workers@1,2#, the condensate is prepared atBzero and then evolved
to a larger field. In later experiments@5,6# the field was turned to a
lower value, close toBpeak for a short time, and somewhere b
tweenBpeak andBzero for the duration of the experiment.
04362
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the condensate eventually stabilizes retaining a num
Nremnant of atoms.

During this period, a cloud or burst of atoms is observ
These atoms oscillate in the radial direction with the tr
radial frequency. The energy associated with the burs
larger in the radial direction than in the axial direction. T
number of atoms in the burst increases with the time elap
since the decay begins, with a time constant of about 1.2
after 7 ms, the number of burst atoms stabilizes. About a fi
of the atoms in the condensate go into the burst, with va
tions of about 20%.

Condensate decay is interrupted at a timet5tevolve ,
when the scattering length is again tuned to a positive va
If the condensate is already stabilized attevolve , nothing too
drastic happens, but otherwise a new phenomenon app
namely the expulsion of a jet of atoms. Jets have much lo
kinetic energy than bursts~a few nano-Kelvin!.

B. Basic equations

The model1 is based on the Hamiltonian operator forN
interacting atoms with massM in a trap

Ĥ5E dr H 2
\2

2M
C†¹2C1V~r !C†C2

U

2
C†2C2J ,

~1!

with the total number operatorN given by

N5E drC†C. ~2!

1In writing down the main equations of our model, we choose
sign convention that makes the effective coupling constant pos
for an attractive interaction, and a system of units adapted to
problem. Taking the average frequencyv as reference, we may
define length and time scalesaho andtho ~see above! and an energy
scaleEho5\v5Mv2aho

2 . From now on, we shall choose unit
such that these three scales take value 1.

o-

FIG. 2. ~Color online! Qualitative evolution of the effective
scattering length as a function of time in the experiment by Don
and co-workers@1,2# ~unlike in the body of the paper, we follow
here the usual sign convention!. The scattering length in measure
in multiples of Bohr radiusa050.529310210 m, time is measured
in milliseconds. The condensate is prepared ata50, and then the
effective interaction is made attractive. After a timetevolve , the
interaction is made repulsive, which allows the condensate to
pand and aids visualization.
5-3
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E. A. CALZETTA AND B. L. HU PHYSICAL REVIEW A 68, 043625 ~2003!
Here V(r ) is the trap potential andU is ~assumed to be a
short ranged! the interaction between the atoms. We intr
duce a dimensionless field operatorC(x),

C~r ![aho
23/2C~x!, ~3!

whereaho is a characteristic length of the trap, and a dime
sionless coupling constantu,

U[\vaho
3 u. ~4!

In terms of the scattering lengtha ~which we define as
positive for an attractive interaction!, we have

U5
4p\2a

M
. ~5!

So

u5
4p\a

Mvaho
3

54pS a

aho
D . ~6!

The Hamiltonian and the trap potential can also be writ
in terms of dimensionless variables

Ĥ5EhoĤ, V~r !5EhoV~r !. ~7!

Assuming a cylinder shaped potential

V~r !5 1
2 ~vz

2z21vr
2r2!, ~8!

with radial r and longitudinalz coordinates measured i
units of aho, with associated~dimensionless! frequencies
vz5vaxial /v;1/2 andvr5v radial /v;A2.

C obeys the equation of motion

Ċ5 i @Ĥ,C# ~9!

and the equal time commutation relations

@C~ t,r !,C†~ t,r 8!#5d (3)~r2r 8!, ~10!

whereby

i
]C

]t
5HC2uC†C2. ~11!

Here

H52 1
2“

21V~r ! ~12!

is the~dimensionless! one-particle trap Hamiltonian. We de
compose the Heisenberg operatorC into a c-number con-
densate amplitudeF and aq-number noncondensate amp
tudec, consisting of the fluctuations or excitations

C~r ,t !5F~r ,t !1c~r ,t !. ~13!

Then

C†C5uFu21F~c†1c!1c†c ~14!
04362
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and

n[^C†C&5uFu21^c†c&[n01ñ, ~15!

where ^& denotes the expectation value with respect to
initial quantum state. The cross terms vanish because
mean field is defined with zero fluctuations. Heren05uFu2 is
the number density of the condensate andñ[^c†c& is the
number density corresponding to the fluctuations. Furthe

C†C25~F* 1c†!~F212Fc1c2!

5uFu2F12uFu2c1F2c†12Fc†c

1F* c21c†c2. ~16!

Under the self-consistent mean-field approximation@25#

c†c.^c†c&5ñ, ~17!

c2.^c2&5m̃, ~18!

wherem̃ is sometimes called the anomalous density, and

c†c2.0. ~19!

Taking the expectation value of the Heisenberg equation,
obtain the Gross-Pitaevskii equation~GPE!

i
]F

]t
2HF1uuFu2F1u$2Fñ1F* m̃%50. ~20!

Subtracting this from the original Eq.~10!, and neglecting
nonlinear terms, we obtain the equation for the fluctuat
field

F i
]

]t
2H12uuFu2Gc~x!1uF2c†~x!50. ~21!

This is the basic equation we shall use here for analyzing
behavior of the excitations~fluctuations! for a given conden-
sate evolution. From the evolution of the fluctuations we c
then calculate the modified evolution of the condensate. N
that only in taking the Bogoliubov approximation~settingñ

5m̃50) will one get a closed equation, the Gross-Pitaevs
equation, for the condensate. In principle these two equat
for fluctuations~21! and condensate~20! need be solved to-
gether in a self-consistent manner.~This is called the ‘‘back-
reaction problem’’ first studied in external field or cosm
logical particle creation problems.! Here we solve only the
equation for the fluctuation field using the experimenta
measured value for the background field. As mentioned
lier this is already a~lowest-order! backreaction-modified or
self-consistent solution which is an improvement over
mean-field solution obtained from the GP equation.

We next parametrize the wave functions as

F5F0e2 iQ, ~22!

c5c0e2 iQ, ~23!
5-4
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BOSE-EINSTEIN CONDENSATE COLLAPSE AND . . . PHYSICAL REVIEW A68, 043625 ~2003!
whereF0 andQ are real. We seek to express the two eq
tions for F,c by the three equations for the three real qua
tities F0 ,c0 ,Q. Observe that

“x
2~Fe2 iQ!5e2 iQ$“x

2F22i“Q“F2@ i¹2Q1~“Q!2#F%,

~24!

therefore,

]Q

]t
1

1

2
~“Q!22

1

F0
HF01uF0

21u$2ñ1Rem̃%50,

~25!

]F0

]t
1“Q“F01

1

2
~“2Q!F01uF0Im m̃50, ~26!

F i
]

]t
2H12uF0

2Gc01uF0
2c0

†1c0

]Q

]t
1 i“Q“c0

1
1

2
@ i“2Q1~“Q!2#c050. ~27!

The third equation may be simplified by using the first eq
tion,

F i S ]

]t
1~“Q!“1

1

2
“

2Q D2H1
1

F0
~HF0!1uF0

2Gc0

1uF0
2c0

†50. ~28!

We have also neglected terms which were nonlinear in fl
tuations.

III. ONSET OF COLLAPSE AND SCALING OF tcollapse

A. The early stage

During the first few milliseconds of evolution, we ma
regard the condensate density as time independent, an
condensate phase as homogeneous~see Appendix A for jus-
tification!. We may then write the equation for the fluctuatio
field Eq. ~21! as

F i
]

]t
2H1E0Gc01uF0

2~c01c0
†!50, ~29!

E05 1
2 ~vz12vr!. ~30!

To solve this equation we decompose it into a self-adjo
and an antiadjoint part

c05j1 ih, ~31!

with each part satisfying an equation:

]j

]t
5@H2E0#h, ~32!

]h

]t
1@H2E022uF0

2#j50. ~33!
04362
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In the subspace orthogonal to the condensate, the ope
has an inverse, hence

h5@H2E0#21
]j

]t
, ~34!

and since the trap Hamiltonian is time independent, we h

]2j

]t2
1@H2E0#He f fj50. ~35!

Here

He f f5H2E022uF0
2 ~36!

is the Hamiltonian for a particle moving in the potential

V~r !5 1
2 @vz

2z21vr
2r22Ae2r 2

22E0#, ~37!

wherer 25vzz
21vrr2 andA54N0u/p3/2. @Recall from ex-

periment that the condensate is stable forA<16(0.55)/Ap
54.96].

Suppose@H2E0#He f f has eigenvectorscK , with eigen-
valueslK , we can expand

j5(
nW

cK~ t !cK . ~38!

ThencK(t) will be a superposition of two harmonic oscilla
tions with frequencies6AlK. To have an unstable conden
sate it is necessary that at least one of thelK is negative; the
boundary of stability occurs when the lowestlK , sayl0, is
exactly zero. Since@H2E0# has an inverse, the equatio
@H2E0#He f fc050 impliesHe f fc050.

In conclusion, the onset of collapse corresponds to
minimum value of the condensate density for which the
fective HamiltonianHe f f develops a zero mode.

B. The onset of collapse

We shall now study the spectrum of the operatorHe f f .
The idea is that the low-lying states, which are the m
relevant ones to our discussion, will try to keep close
where the potential is a minimum, namely, the origin. If t
width of the state is small enough, the potential will b
nearly harmonic.

One further consideration is that we are interested in
part of the fluctuation field which remains orthogonal to t
condensate, since fluctuations along the condensate m
may be interpreted as condensate fluctuations rather than
ticle loss. This is granted for all modes with odd parity; f
modes of even parity, it means that a certain combinat
must be excluded. The ground state ofHe f f is certainly not
orthogonal to the condensate, since neither has nodes.

A simple but remarkably accurate way of determini
whether or notHe f f admits a zero mode is to consider i
expectation valuêHe f f& with respect to some appropriat
trial state. The first excited eigenvalueE100 is the minimum
possible expectation value, taken with respect to any norm
ized state orthogonal to the ground state. Therefore, if
5-5
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may exhibit a wave function leading to a negative^He f f&,
then necessarilyE100 is negative as well.

Let us write

He f f5H0
z1H0

r22uF0
22E0 , ~39!

H0
z5

pz
2

2
1

vz
2z2

2
, ~40!

H0
r5

pr
2

2
1

vr
2r2

2
. ~41!

Recall for the condensate

F0
25

N0

p3/2
e2[vzz

21vrr2] . ~42!

We shall try to minimize the expectation value ofH with
respect to a wave function of the form

c1
Vz~z!c0

Vr~x!c0
Vr~y!, ~43!

wherec0
V andc1

V are the fundamental and first excited sta
of a one-dimensional harmonic oscillator with arbitrary fr
quencyV,

c0
V5S V

p D 1/4

e2Vz2/2, ~44!

c1
V5S 4V

p D 1/4

~V1/2z!e2Vz2/2. ~45!

The free part yields

^H0
z&5

3

4 S Vz1
vz

2

Vz
D , ~46!

^H0
r&5

1

2 S Vr1
vr

2

Vr
D . ~47!

The condensate part yields

E d3rF0
2~r !@c1

Vz~z!c0
Vr~x!c0

Vr~y!#2

5
N0

p3/2
VrVz

3/2~vz1Vz!
23/2~vr1Vr!21. ~48!

Putting them together

^He f f&5
1

2 F 3

2 S Vz1
vz

2

Vz
D 1S Vr1

vr
2

Vr
D 2vz22vr

2
A

S 11
vz

Vz
D 3/2S 11

vr

Vr
D G , ~49!
04362
s

where

A54u
N0

p3/2
5

16

Ap
S N0

a

aho
D . ~50!

If we adopt the valuesvz51/2, vr5A2, relevant to the
JILA experiment, then we obtain̂He f f&50 for the first time
whenA5Acrit;4.6, Vz;0.78, andVr;1.7. From the defi-
nition of A, we conclude that instability will occur when

N0

acrit

aho
5k5

Ap

16
Acrit50.51. ~51!

This result compares remarkably well with the experimen
value k50.55, as well as with the theoretical estimate p
sented in Ref.@53#. This agreement may be seen as natu
as the equations we postulate for the fluctuations may
obtained from the linearization of the GPE, discarding bot˜

and m̃. In both calculations, the geometry of the trap plays
fundamental role.

C. Scaling of tcollapse

As we have already noted, even for condensate dens
above the stability limit, no particle is seen to be lost fro
the condensate during a waiting timetcollapse.

Even in the absence of a detailed model of the conden
evolution, the above analysis allows us to make a defin
prediction of the waytcollapse scales with the scattering
length. The basic idea is that, whiletcollapse depends in a
complex way on several time scales, some intrinsic to
condensate and some related to the condens
noncondensate interaction, up totcollapse the time scales in-
trinsic to the condensate are very large compared to the o
processes. The nontrivial point is that even in this limit t
time scales of the noncondensate remain finite, and so
fix the scale fortcollapse itself. Using the exponential growth
of the first excited state as a measure, we are led to
estimatetcollapse;«21.

Consider a value ofA close to, yet higher than, the critica
one. The fastest growing mode is the eigenvector of@H
2E0#He f f with most negative eigenvalue, say2s. WhenA
takes the critical valueAcr , s50. Close to the critical point,
we may computes using time independent perturbatio
theory, even if@H2E0#He f f is not Hermitian. The idea is
that at the critical value ofA there is a single normalized
state u100& orthogonal to the condensate such that@H
2E0#He f fu100&50 and

^100u@H2E0#He f fuc&1^cu@H2E0#He f fu100&50
~52!

for any stateuc& orthogonal to both condensate andu100&
~otherwise, there would be states orthogonal to the cond
sate with^@H2E0#He f f&,0, which is impossible!. Now for
A slightly above the critical value, letus&5u100&1uds&,
^100uds&50 be the eigenstate corresponding to the mi
mum eigenvalue2s. Then
5-6
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2s5^100u@H2E0#He f fus&

5^100u@H2E0#He f fu100&1higher-order terms

~53!

and so

s;S A

Acrit
21D ^@H2E0#2uF0

2&, ~54!

where the expectation value is computed at the critical po
Since we know the form of the wave function, computing t
expectation value is a simple exercise. We find that the gr
ing mode increases as exp«t, where

«5As;TS A

Acrit
21D 1/2

~55!

andT5^@H2E0#2uF0
2&;0.6. SinceA/Acrit5a/acr for the

given total number of atoms,

tcollapse5tcrit S a

acr
21D 21/2

. ~56!

The power-law Eq.~56! describes with great accuracy th
way tcollapsescales with the scattering length; the actual p
diction tcrit;T21 is correct only as an order of magnitud
estimate. In natural units,T21 is about 20 ms, while the bes
fit to the experimental data is obtained fortcrit;5 ms.

We should stress that the factor of 4 discrepancy betw
our prediction and the experimental result could be ea
explained away in terms of a more complete model of c
densate depletion. For example, the probability for two p
ticles in the condensate to collide and transfer to the grow
mode, Bose enhanced by the population in the latter, wo
go as (c†c)2, thereby yielding the factor of 4 in the expo
nent. However, in this paper we shall keep to our goal
providing the simplest theory which gives the best qual
tive description of the condensate collapse phenome
hereby understood as arising from the quantum dynamic
the fluctuations.

An analysis of collapse based on the Popov approxim
tion equations, for a simplified geometry, is given in R
@31#. However, the timetNL;(uN0)21 @54#, which is here-
with identified as characteristic of collapse, does not acco
for the enhancement oftcollapse near the critical point.

In Fig. 3 we plot the scaling law~56! ~full line! derived
here and compare it with the experimental data forN0
56000 as reported in Refs.@1,2# ~small black points!, the
tNL;(uN0)21 prediction~suitable scaled! as given in Refs.
@31,2# ~dashed line! and the results of numerical simulation
reported in Ref.@21# ~large gray dots!. While all three theo-
retical predictions may be considered satisfactory, thetNL
;(uN0)21 fails to describe the divergence oftcollapseas the
critical point is approached. The results of numerical sim
lations reported in Ref.@21# based on an improved Gros
Pitaevskii equation tend to be systematically above the
perimental results. In a classical instability, the unsta
modes must grow from zero, while in a quantum instabil
04362
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they are always seeded by their own zero-point fluctuatio
which speeds up the development of the instability. The
fore, the fact that numerical simulations based on class
instability tend to overestimatetcollapse may be a further in-
dication of the quantum origin of the phenomenon.

D. Minor role of a molecular condensate

Having obtained some insight into the early stages of c
lapse, let us discuss briefly how the present model may
modified to explicitly account for the population of a mo
lecular state. We refer the reader to Refs.@10,14,11# for fur-
ther details.

The system of atoms and molecules at the Feshbach r
nant state may be described by a theory where the fundam
tal degrees of freedom are an atomic fieldC(x) ~we use the
dimensionless amplitude introduced in the preceding S
tion! and a molecular fieldA(x). The Hamiltonian takes the
form

H5Hatom1Hmol1Hbe1Hint , ~57!

FIG. 3. ~Color online! Plot of tcollapse ~in milliseconds! against
acollapse ~in multiples of Bohr radiusa050.529310210 m). We
plot the scaling law Eq.~56! ~full line! and compare it against th
experimental data forN056000 as reported in Refs.@1,2# ~small
black dots!, the tNL;(uN0)21 prediction~suitably scaled! as given
in Refs. @31,2# ~dashed line!, and the results of numerical simula
tions reported in Ref.@21# ~large gray dots!. While all three theo-
retical predictions may be considered satisfactory, thetNL

;(uN0)21 fails to describe the divergence oftcollapseas the critical
point is approached. The results of numerical simulations base
an improved Gross-Pitaevskii equation tend to be systematic
above the experimental results. In a classical instability, the
stable modes must grow from zero, while in a quantum instabi
they are always seeded by their own zero-point fluctuations, wh
speeds up the development of the instability. Therefore, the fact
numerical simulations tend to overestimatetcollapse may be a fur-
ther indication of the quantum origin of the phenomenon.
5-7
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where

Hatom5Htrap1Hbkgd. ~58!

HereHtrap given in Eq.~12! describes the dynamics of fre
atoms in the trap,Hbkgd accounts for the background inte
action between atoms~that is, very far from resonance!

Hbkgd5S 2ubkgd

2 D E d3xC†2C2~x!, ~59!

where@6# ~recall that our sign convention is a positive sc
tering length for an attractive interaction!

ubkgd54p
abkgd

aho
, abkgd5450a0⇒ubkgd50.1. ~60!

Hmol describes the motion of molecules in the trap. We tr
a molecule as a particle of mass 2M ~whereM is the mass of
the atom! subject to a potential 2V ~where V is the trap
potential seen by the atoms! @55#, so the frequency of oscil
lations in the trap is the same for atoms and molecules.Hbe
accounts for the energy difference between a molecule
two atoms

Hbe52«~B!E d3xA†A~x!. ~61!

Plots of the binding energy«(B) as a function of the applied
field B are given in Refs.@8,13#. Finally, Hint accounts for
the formation and dissociation of molecules:

Hint5GE d3x~A†C21C†2A!~x!. ~62!

The binding energy«(B) is the crucial input parameter i
the model. «(B)50 at the resonance fieldB5Bpeak
5155 G @13# and increases with largerB’s. At values ofB
;156 G typical of the Ramsey fringes experiment@6# we
already have binding energies of the order of 10 KHz; this
much larger than 100 Hz typical of motion in the trap, a
thereforeHmol is negligible~in the condensate collapse e
periment@1# typical fields whereB;167 G, and«(B) was
much larger!. Under this approximation, thef ull Heisenberg
equation of motion for the molecular field

i
]

]t
A52«~B!A1GC2 ~63!

may be solved analytically

A~r ,t !5A~r ,0!ei«t2 iGE
0

t

dt8ei«(t2t8)C2~r ,t8!. ~64!

If the atomic field is slowly varying in the scale of«21, then
the integral is dominated by the upper limit, and simplifies

A~r ,t !5Af ree~r ,t !1
G

«
C2~r ,t !. ~65!
04362
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The free part decouples from the atomic condensate, and
effect of the driven part is to introduce an effective intera
tion among atoms, so thatubkgd in Hbkgd is replaced by

ue f f5ubkgd2
2G2

«~B!
, ~66!

which is the familiar pattern that makes it possible to tu
the scattering length. The effective scattering length vanis
at B5Bzero5165.75 G@13# ~see Fig. 1!.

We conclude that under this approximation, the numbe
molecules—disregarding those already present indep
dently of the atomic condensate—is

Nmol;S G

« D 2

Natom
2 5

ubkgd

2«~B! S 12
ue f f

ubkgd
DNatom

2 . ~67!

If Natom;16 000 andue f f;2ubkgd @6#, then the molecular
condensate becomes important when«(B);ubkgdNatomvho
5128 kHz. This regime was achieved in Ref.@6#. Under
these conditions we cannot rely on the above approximat
but rather we must solve the model. This yields ato
molecule oscillations with a frequency set by«(B).

In contrast, in the condensate collapse experiment@1# the
magnetic field was drivenabove Bzero, with typical values
B5167 G. For these fields, the molecular binding energy
close to 12 MHz~see Refs.@13,56#!, or 153104v0 Therefore
Nmol;0.005Natom;80. This is less than the number of a
oms even in the earliest measured jets~see Ref.@1# and be-
low!, suggesting that no major role is played by molecu
recombination. This conclusion is consistent with the fa
that no oscillations in the number of particles in the cond
sate are seen~see@1# and below!. It is interesting to observe
that the numerical simulations presented in Ref.@14# assume
a set of parameters chosen to display the effect most cle
not attempting to be realistic.

This leaves open the possibility that the approximat
may break down because the atomic field is not slowly va
ing with respect to«21. For example, the time it takes t
change the magnetic field fromBzero to Bevolve is probably
of the order of 10ms5831024vho

21 @6#. This is a short time
compared to«21 under the conditions of the Ramsey fring
experiment@6#, but a rather easy stroll in the condensa
collapse experiment@1#. The next scale in which we expec
the condensate to react~which is also of the order of the
inverse atomic chemical potential! is tNL @54,31#, but this is
of the order of milliseconds and therefore way too long.

The conclusion is that formation or dissociation of mo
ecules, under the conditions of the condensate collapse
periment@1#, is unlikely to have played a central role. More
over, in models where the molecular state is explici
included, it is still necessary to account for the quantum
namics of the atomic field. This is done, for example, in R
@14# by tracking the fluctuation two-point functions alon
with the condensates, or in Ref.@11# by providing indepen-
dent equations for the anomalous atom pair amplitude. Re
nance of molecular field with the condensate alone, tho
remarkably successful in the later experiments, cannot
count for the phenomena of this experiment. For the exp
5-8
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BOSE-EINSTEIN CONDENSATE COLLAPSE AND . . . PHYSICAL REVIEW A68, 043625 ~2003!
ment of Donley and co-workers@1,2# the dominant qualita-
tive features are determined by the dynamical vacu
squeezing mechanism proposed here; including a molec
field can only provide a minor quantitative improvement.

IV. EVOLUTION OF FLUCTUATIONS: BURSTS AND JETS

In the preceding section, we were mostly concerned w
identifying the factors that can render the condensate
stable. In this section, we shall consider the quantum ev
tion of fluctuations, as a test field riding on the collapsi
condensate extracted from experiment. The basic dynam
equations are, from before, Eqs.~31!–~33!, where nowF0

2 is
assumed to have both space and time dependence. The
state is defined by the condition thatu50 for t,0; we shall
take it to be the particle vacuumu0&, which is defined by
c(x,0)u0&50 everywhere. Rather than seeking a rigoro
solution, we wish to understand the structure of the prob
in order to display the extent to which the phenomenology
condensate collapse is determined by fundamental~yet
simple! quantum dynamical effects such as parametric a
plification and particle creation. With this goal in mind, w
shall make some physically motivated simplifications.

We have already seen that it is possible to introduc
mode decomposition of thej operator based on the eige
functions of@H2E0#He f f . This shows that the preconceive
notion that fluctuations will react only to the local state of t
condensate is flawed; the relevant modes are nonlocal
can sample conditions over a large portion of the trap.

For short wavelengthsl, we expect these eigenfunction
will approach trap eigenmodes, sinceH;l22@2uF0

2. Also
the fact that particles in bursts are seen to oscillate with
trap frequencies@1# suggests that their dynamics is dete
mined by the trap Hamiltonian~see below!. Of course, the
trap eigenmodes would also be eigenfunctions ofHe f f if this
operator andH commuted. Now, since

@H,He f f#5u$“2F0
212“F0

2
“%, ~68!

we see that we may disregard the commutator when the
densate is slowly varying with respect to the relevant mod
Early enough in the collapse, the typical scale for the c
densate isaho , and this condition will hold for almost ever
mode. Thus we shall make the approximation of assumin
homogeneous condensate. The amplitude of the hom
neous condensate will be chosen to enforce the onset o
stability. Since we expect the lowest trap mode to beco
unstable whenN5Ncr5k/a ~in units whereaho51), we
approximate

2uF0
2[S a

k DvzN0~ t !, ~69!

whereN0(t) is the instantaneous total number of particles
the condensate. For constantN0 , this yields «;vz(a/acr
21)1/2 for the time constant of the growing mode, which
close to the more rigorous estimate Eq.~55!, above.

In practice,k21 in Eq. ~69! is a measure of the overla
between the condensate and the excitation modes, as in
04362
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~48! above. Therefore, the approximation may be improv
by adjustingk according to the range of modes where it w
be applied. We shall adopt this practice in what follows.

A. Evolution of fluctuations up to tcollapse

We now proceed with the quantitative analysis of cond
sate collapse. We assume a given evolution extracted f
experiment for the number of particles in the condensate
analyze the evolution of fluctuations treated as a test field
this dynamic background.

Concretely, we shall consider evolutions where the nu
ber of particles in the condensate remains constant from
time t50 when the scattering length is switched to a ne
tive value up to some timetcollapse, and decays exponen
tially from then on~see Fig. 4!. In the actual experiments th
condensate does not evaporate completely, but the numb
particles in the remnant is much smaller than the initial nu
ber of atoms in the condensate, and is therefore negligibl
the early times when the approximation of a homogene
condensate is valid.

Let us begin by considering the evolution up to the tim

of collapsetcollapse, or the waiting period. LetN̄0 be the
initial number of particles in the condensate, andacr

5k/N̄0 be the corresponding critical scattering length. Tr
eigenfunctions are labeled by a string of quantum numb

nW 5(nz ,nx ,ny). The eigenvalues of the trap Hamiltonian a
~with the zero energy already subtracted! EnW5nW •vW where
vW 5(vz ,vr ,vr) and nW •vW 5vznz1vr(nx1ny). We choose
the eigenfunctionscnW to be real.

Let us expand

c5(
nW

anW~ t !cnW~r !, ~70!

FIG. 4. The evolution for the number of particles in the conde
sateN(t) as a function of time~measured in milliseconds! assumed
for the calculation of the number of particles in a jet. For compa
son, we have superimposed the data from Fig. 1~b! of Ref. @1#. The
agreement is satisfactory for our purposes, as we shall not con
the evolution beyondtevolve512 ms nor the formation of a rem
nant.
5-9
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j5(
nW

cnW~ t !cnW , ~71!

h5(
nW

bnW~ t !cnW . ~72!

Then

cnW5 1
2 ~anW1anW

†
!, ~73!

bnW5
1

2i
~anW2anW

†
!, ~74!

d

dt
bnW52FEnW2S a

acr
DvzGcnW , ~75!

d

dt
cnW5EnWbnW . ~76!

We see that there are two kinds of modes, stable~oscillatory,
or thawed! modes ifEnW.(a/acr)vz , and unstable~growing,
or frozen! modes if not. We shall consider each kind in tur

B. Stable modes and bursts

First consider the case whenEnW.(a/acr)vz . We get

cnW~ t !5
1

2
~anW1anW

†
!~0!cosvnW t1

1

2ixnW
~anW2anW

†
!~0!sinvnW t,

~77!

bnW~ t !5
1

2i
~anW2anW

†
!~0!cosvnW t2

1

2
xnW~anW1anW

†
!~0!sinvnW t,

~78!

where

vnW5AEnWFEnW2S a

acr
DvzG5xnWEnW , ~79!

xnW5A12S a

acr
D vz

EnW
. ~80!

So

anW~ t !5 f nW~ t !anW~0!1gnW~ t !anW
†
~0!, ~81!

where

f nW~ t !5cosvnW t1F22S a

acr
D vz

EnW
GsinvnW t

2ixnW
, ~82!

gnW~ t !52S a

acr
D vz

EnW

sinvnW t

2ixnW
. ~83!

Observe that
04362
.

u f nW~ t !u22ugnW~ t !u25cos2vnW t1H F22S a

acr
D vz

EnW
G 2

2S a

acr

vz

EnW
D 2J sin2vnW t

4xnW
2 51, ~84!

as required by the commutation relations. Although we
sume vacuum initial conditions, these modes do not rem
empty. The density

ñ~r ,t !5(
nW

cnW
2
~r !^anW

†
~ t !anW~ t !&5(

nW
cnW

2
~r !ugnW~ t !u2

5
1

8 S a

acr
D 2

vz
2(

nW
cnW

2
~r !

sin2vnW t

vnW
2 . ~85!

We see that the density has a constant term and an oscilla
term. In our view this oscillatory term is responsible for th
appearance of bursts of particles oscillating within the tr
This point is worth some elaboration, as it will make clea
the contrast with the unstable modes to be discussed be

Let us approximate the amplitudescnW(r ) by their WKB
forms

cnW~r !5 )
i 5123

c i~r i !, ~86!

c i~r i !5
1

Api

cosFSi2ni

p

2 G , ~87!

where

Si5E
0

r i
dxpi~x!, ~88!

pi5A2niv i2v i
2r i

2. ~89!

After expanding all trigonometric functions, we see that t
oscillatory part is a linear combination of terms of the for

expH2i F( Si2vnW t G J ~90!

in all sign combinations. If we look at the density at a giv
point and time (r ,t), we see that the modes that contribu
effectively are those for that~in the limit xnW→1, EnW@vz)

v iF E
0

r i dx

pi~x!
2tG50. ~91!

This equation describes a particle that moves along a cla
cal trajectory in the trap potential, starting from the origin
t50 with momentumpi(0). If we include the phase shift in
computing the saddle point, there is a time delay, but it is
same for all particles.

We conclude that the oscillatory part of the density d
scribes a swarm of particles moving along classical trajec
5-10



or
u
rg
e
e

as

he
us
tu
t

e
e
he
u

ov
in
c
a

a
t
n

ic
fr
ay

res
-off
t.
ozen

ot
than
e of
ing

pted
e
ire
the

n is

tor
he

es
ally,
ific
om

of

nd
te,
ited
tion,
ains

ages

par-

lly

a
s

ple
of
ay

ec-
is
the

y a

-
ons

BOSE-EINSTEIN CONDENSATE COLLAPSE AND . . . PHYSICAL REVIEW A68, 043625 ~2003!
ries in the trap potential. These trajectories return to the
gin at multiples of the inverse trap frequencies, th
producing a surge in the local density, which becomes la
enough to be seen by destructive absorption imaging. Th
particles constitute the so-called bursts observed in the
periment of Donley and co-workers@1,2#.

C. Unstable modes and jets

Let us now consider the opposite caseEnW<(a/acr)vz .
Formally we may obtain the relevant formulas from the l
section with the replacementxnW5 iqnW , vnW5 isnW , thus trans-
forming cosvnWt→coshsnWt and sinvnWt→i sinhsnWt. We get

cnW~ t !5
1

2
~anW1anW

†
!~0!coshsnW t1

1

2iqnW
~anW2anW

†
!~0!sinhsnW t,

~92!

bnW~ t !5
1

2i
~anW2anW

†
!~0!coshsnW t

1
1

2
qnW~anW1anW

†
!~0!sinhsnW t. ~93!

So again

anW~ t !5 f nW~ t !anW~0!1gnW~ t !anW
†
~0!. ~94!

But now

f nW~ t !5coshsnW t1
1

2iqnW
~12qnW

2
!sinhsnW t, ~95!

gnW~ t !5
21

2iqnW
~11qnW

2
!sinhsnW t5

i

2qnW
S a

acr
D vz

EnW
sinhsnW t.

~96!

Physically the difference is huge. In the first place, t
density is growing exponentially. But unlike the previo
case, there is no oscillatory component. While the ac
number of particles is increasing, there are no surges in
density caused by the sudden constructive interferenc
many modes. In particular these particles do not contribut
the central peak in the density distribution. In this sense, t
cannot be seen by destructive absorption imaging. Beca
these particles do not oscillate in the trap, in the sense ab
we say these modes are frozen in the same sense used
theories of cosmological structure formation, i.e., that flu
tuations in an evolving universe are said to freeze upon le
ing the horizon@44#.

However, these modes come alive attevolve , when the
scattering length is set to zero. Now they become ordin
trap modes, and oscillate in the trap in the same way as
burst described above. To the observer, they appear as a
injection of particles from the core of the condensate, wh
makes up the so-called jets. The sudden activation of a
zen mode by turning off the particle-particle interaction m
be described as a ‘‘thaw.’’
04362
i-
s
e
se
x-

t

al
he
of
to
y
se
e,
the
-
v-

ry
he
ew
h
o-

Observe that in this picture several conspicuous featu
of jets become obvious. Jets may only appear if the turn
time tevolve is earlier than the formation of the remnan
Once the condensate is stable again, there are no more fr
modes to thaw. On the other hand, jets will appear~as ob-
served! for tevolve,tcollapse, when the condensate has n
yet shed any particles. Also jets must be less energetic
bursts, since they are composed of lower modes. Becaus
their relative weakness, treating them as test particles rid
on the dynamic condensate as is the approximation ado
here~‘test field’! works better for jets than for bursts. A mor
accurate depiction of the dynamics of bursts may requ
consideration of the backreaction of the fluctuations on
condensate.

D. Beyond tcollapse: Thawing

The main physics we presented in the preceding sectio
that the amplitude for a normal mode in the excitation~fluc-
tuations! of the condensate evolves as a harmonic oscilla
with a complex frequency dictated by the dynamics of t
condensate. Parametric amplification~or, in a quantum op-
tics, squeezing! of the fluctuations populates the mod
above the condensate, even from a vacuum state origin
manifesting as bursts or jets. Thus in our view the spec
phenomena arising from the collapse of a BEC formed fr
a dilute Bose-Einstein gas arises from the squeezing
~vacuum! fluctuations by the condensate dynamics.

Let us now discuss the behavior of fluctuations beyo
tcollapse, when the number of particles in the condensa
and therefore the instantaneous frequency of the exc
modes, become time dependent. As in the preceding Sec
we shall assume nevertheless that the condensate rem
homogeneous, thereby confining ourselves to the early st
of collapse.

For concreteness, let us assume that the number of
ticles in the condensate remains constantN05N̄0516 000
up to t5tcollapse53 ms, and then decays exponentia
N0(t)5N̄0exp@2(t2tcollapse)/t#, with t56 ms ~see Fig. 4!.
The mean frequencyv580 Hz of the trap corresponds to
temperature\v/kB552.5 nK. The actual trap frequencie
reported in Ref.@1# v radial5110 Hz andvaxial542.7 Hz
correspond to temperatures 28.012~axial! and 72.162~ra-
dial! nK. These are relatively high with respect to the sam
temperature of 3 nK. For this reason the initial number
particles above the condensate is negligible, and we m
assume that we are dealing with particle creation from eff
tively the vacuum. This is the rationale behind calling th
process ‘‘squeezing of the vacuum.’’ We shall assume
scattering length is brought toa536a0. We shall approxi-
mate the effect of the condensate on the fluctuations b
constant level shift as in Eq.~69!. The best fit to the experi-
mental data is obtained fork50.46, which is satisfactorily
close to the experimental value of 0.55.

Shifting the origin of time totcollapse for simplicity, we
write N0(t)5N̄0exp(2t/t). After expanding in trap eigen
modes as in the preceding Section, we obtain the equati
5-11
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d

dt
bnW52FEnW2S avz

ā
D exp~2t/t!GcnW , ~97!

d

dt
cnW5EnWbnW . ~98!

Therefore

d2

dt2
cnW1EnWFEnW2S avz

ā
D exp~2t/t!GcnW50. ~99!

This equation clearly displays the two kinds of behavior d
scribed above~an exact solution is provided in Appendix B!.
If EnW.(avz /ā), the mode is always oscillatory. IfEnW

,(avz /ā), the mode is frozen attcollapse, but thaws when
exp(2t/t);EnW ā/avz ~see Fig. 5!. During the frozen period
the modes are amplified, but they only contribute to bur
after thaw. If the evolution is interrupted while still froze
they appear as a jet.

We therefore conclude that the numberNjet of particles in
a jet at timetevolve is essentially the total number of particle
in all frozen modes at that time. If we write as before

anW~ t !5 f nW~ t !anW~0!1gnW~ t !anW
†
~0!, ~100!

then

Njet~ t !5 (
EnW<(avz /ā)exp(2t/t)

ugnW~ t !2u. ~101!

This is plotted in Fig. 6, from the exact solution in Append
B, with the parameters given above, and compared to
corresponding results as reported in Ref.@1#. We see that the
agreement is excellent at early times~up to about 6 ms!. For
later times, the model overestimates the jet population. T

FIG. 5. ~Color online! A schematic depiction of the evolution o
the proper frequencies of different modes in time, both in arbitr
units. Short-wavelength modes remain stable throughout, but
sudden change in proper frequency when the interaction is switc
on induces particle creation in them. These particles are perce
as bursts. Long-wavelength modes actually become unstable~or
frozen! until the condensate has lost enough atoms. During
period they are amplified. When they become stable again, they
seen as a secondary emission or jet.
04362
-

ts

e

is

is due to the fact that, by not considering the shrinking of
condensate, we are overestimating the overlap between
condensate and the fluctuations, thus delaying the thaw
nevertheless reproduces the overall slope of the particle n
ber with tevolve , which is quite remarkable considering th
simplicity of the model.

The see-saw pattern follows from the discreteness of
modes. Modes thaw at discrete timestk* . Between one and
the next, occupation numbers of the unstable modes are
creasing, and so the number of particles in the jet is a gr
ing function oftevolve . When the next stabilization occurs
the particles in the now stable mode no longer contribute
later jets, and the particle number in the jet decreases b
finite amount. This pattern accounts for the fact that a
from a latertevolve may be stronger than earlier ones, a
also for the large variation in the number of particles in je
with similar values oftevolve . It should also be remembere
that we are computing the expected number of particles,
that, in the highly squeezed state which results from the
zen period, the fluctuations in particle number are com
rable to the mean number itself.

V. CONCLUSION

In this paper, we have applied insight from the quantu
field theory of particle creation and structure formation
cosmological spacetimes and the theory of second-o
phase transitions to a specific scenario of controlled colla
of a Bose-Einstein condensate, as observed in the experim
to Donley and co-workers@1,2#. We have described thes
phenomena as resulting from particle creation from
vacuum, induced by the time-dependent condensate.
time dependence squeezes and amplifies the field ope
describing excitations above the condensate. A key con
in our analysis borrowed from theories of cosmologic
structure formation is the drastic difference in the physi

y
he
ed
ed

is
re

FIG. 6. The evolution of the number of particles in a jet as

function of the timetevolve ~measured in milliseconds!, for N̄0

516 000, v radial5110 Hz, vaxial542.7 Hz, a536a0, and k
50.46 @see Eq.~69!#. The evolution ofN(t) in time is depicted in
Fig. 4. To provide a visual reference we have superimposed the
of Fig. 6 of Ref.@1#. The discrepancy between theory and expe
ment beyondtevolve56 ms may be attributed to an overestimatio
of the condensate-noncondensate coupling in neglecting the ch
in the shape of the condensate.
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effects of frozen versus oscillatory modes: those wh
physical frequencies are higher than the collapse rate o
late and are rather impervious to the condensate, while th
below ~frozen modes! grow in time and get amplified, in a
way similar to the growth of fluctuations during spinod
decomposition. As the condensate stabilizes and the coll
rate decreases, the frozen modes begin to thaw. The ap
ance of oscillatory modes~in second quantized language! is
described as particle creation appearing in jets and burst
described in detail above.

In order to focus on the key ideas we have adopte
number of simplifying assumptions. We take the condens
evolution as a given input from the experiments, rather th
deriving it from fully self-consistent equations. We ha
treated excitations within the Popov approximation, wh
improves on the Hartree approach but is known to br
down as the number of particles above the condensate
creases. We have neglected the coupling between diffe
excitation modes, considering only the coupling of each
the condensate.

These simplifications render certain aspects of the pr
lem more amenable to others because they are rather in
sitive to the assumptions. The scaling oftcollapse is shown to
depend on the behavior of a few modes setting the cha
teristic time scale of the problem—therefore the prediction
not affected by the underestimation of the coupling to ot
modes.

Even within these simplifications, we have obtained go
quantitative predictions for the onset of instability, the sc
ing of the waiting timetcollapse~when the condensate implo
sion really begins after the inversion of the scattering leng!
with the scattering length, and also for the number of p
ticles in a jet as a function oftevolve , when the interaction
between atoms is switched off.

Another success of the model is to provide a simple
planation for the widely different appearance of bursts a
jets. As remarked earlier, jets may only appear if the turn-
time tevolve is earlier than the formation of the remnan
because once the condensate is stable again, there a
more frozen modes to thaw, but, on the other hand, jets
appear fortevolve,tcollapse, when the condensate has n
yet shed any particles. Also jets must be less energetic
bursts, since they are composed of lower modes.

Considering the success these simple ideas and light
culations brought about we believe our approach might h
captured the essence of the physics behind these phenom
The physical paradigms we used in bringing forth these id
also suggest that understanding the basic mechanism o
portant processes in cosmology, critical dynamics, and Bo
Einstein condensation may share more than a superfi
ground.
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APPENDIX A: THE CLASSICAL GPE

In this appendix we shall consider the purely classi
GPE, meaning that we shall disregard any backreaction f
fluctuations. The conclusion of this analysis is that for sh
times of the order of 1 ms, it is possible to consider t
modulus of the condensate as time independent, and
phase as space independent. This observation will lead
substantial simplification of the equations for the fluctuatio
in this regime.

Let us begin from the equations

]Q

]t
1

1

2
~“Q!22

1

F0
HF01uF0

250, ~A1!

]F0

]t
1“Q“F01

1

2
~“2Q!F050. ~A2!

It is suggestive to rewrite these equations in the followi
way. The operator

Dt5
]

]t
1~“Q!“ ~A3!

looks a lot as a material derivative with respect to a flu
flowing at each point with velocityv5“Q. It seems natural
to change from the Eulerian coordinatesx to Lagrangian co-
ordinatesq. That is, for givenq we define the functionx
5x(q,t) as the solution to the system

]x~q,t !

]t U
q

5“xQ„x~q,t !,t…, x~q,0!5q. ~A4!

Observe that

Dt5
]

]t U
q

. ~A5!

It is also convenient to define the fields

Ja
i 5

]xi

]qa U ~A6!

and their inversesJi
a . At any given time, theqa are a set of

curvilinear coordinates, with metric

ds25gabdqadqb, ~A7!

gab5d i j Ja
i Jb

j . ~A8!

The wave function transforms as a scalar under this coo
nate change. We also define

J5detJa
i . ~A9!

Observe that
5-13
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]J

]t U
q

5JJi
a ]2Q

]qa]xi
5J“2Q. ~A10!

The volume element isAgd3q,g5detgab5J2, and the La-
placian

1

Ag
]aAggab]b . ~A11!

This suggests writing

F05
F0

AJ
~A12!

to get the equation

]F0

]t
50. ~A13!

Writing the dynamics this way, the role of the phases is h
den in the time dependent curvilinear coordinate syst
since we get

F05F0~q!5
AN0

p3/4
e2q2/2, ~A14!

where we are using the fact that initially the condensate c
responds to a noninteracting gas.

To be definite, consider a situation withN0516 000 and
a530a0. We obtain

N0u54p
a

aho
N05104. ~A15!

Since we expect that, at least initially,HF0;3F0/2, the
dynamics of the phase near the origin is dominated by
uF0

2 term. Concretely, observe that

]Q

]t Ux5
]Q

]t U
q

2~“Q!2. ~A16!

So the equation for the phase reads

]Q

]t
2

1

2
~“Q!22

AJ

F0
H

F0

AJ
1

u

AJ
F0

250. ~A17!

Approximate

Q~q,t !5m02tFuF0
2~q!2

3

2G . ~A18!

Observe that

“Q52tuqF0
2~q!. ~A19!

So

1
2 ~“Q!25~2t2uq2F0

2~q!!uF0
2~q!. ~A20!
04362
-
,
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This term is therefore negligible againstuF0
2 if q@1 or q

<(tAN0u)21; it is small everywhere ift<(AN0u)21. This
is enough to justify the formal procedures in the main bo
of this paper.

The equation that defines the coordinate change fromx to
q becomes

]x~q,t !

]t U
q

52tuqF0
2~q!, x~q,0!5q, ~A21!

with the solution

x5q@11t2uF0
2~q!#. ~A22!

So again, we see that during the first millisecond, we m
approximatex5q everywhere. This establishes the conc
sions anticipated at the beginning of this section.

APPENDIX B: EXACT SOLUTIONS OF THE MODE
EQUATION IN THE DYNAMICAL CASE

In this appendix we shall derive closed-form solutions
the evolution equations for quantum fluctuations af
tcollapse,

d

dt
bnW52FEnW2S avz

ā
D exp~2t/t!GcnW , ~B1!

d

dt
cnW5EnWbnW . ~B2!

Therefore

d2

dt2
cnW1EnWFEnW2S avz

ā
D exp~2t/t!GcnW50. ~B3!

Call

z5z0e(2t/2t). ~B4!

Therefore

d

dt
5

2z

2t

d

dz
~B5!

and

1

4t2
z

d

dz
z

d

dz
cnW1EnWFEnW2S avz

ā
D S z

z0
D 2GcnW50, ~B6!

so

d2

dz2
cnW1

1

z

d

dz
cnW2S 4t2avzEnW

āz0
2

2
4t2EnW

2

z2 D cnW50. ~B7!

Choose

z0
25

4t2avzEnW

ā
~B8!

to find ~recall that thecnW are self-adjoint!
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cnW5anW I 2i tEnW
~z!1anW

†
I 22i tEnW

~z!. ~B9!

We see the two basic behaviors discussed in the prece
section. Fort!t, z@1, the Bessel functions behave as re
exponentials. Whent→`, z→0, the modes oscillate with
frequency6EnW . Modes withEnW.avz /ā are never frozen.
Lower modes are frozen att50, but thaw whenz;2tEnW ,
or

e(2t/t);
āEnW

avz
. ~B10!

The bnW coefficients are given by

bnW5
1

EnW

dcnW

dt
5

2z

2EnWt

dcnW

dz
. ~B11!

The cnW andbnW coefficients must be continuous, so

anW I 2i tEnW
~z0!1anW

†
I 22i tEnW

~z0!5 c̄nW , ~B12!

2z0

2EnWt
FanW

d

dz
I 2i tEnW

~z0!1anW
† d

dz
I 22i tEnW

~z0!G5b̄nW ,

~B13!

where c̄nW and b̄nW are the results of the evolution up t
tcollapse, namely,

c̄nW5
1

2
~anW1anW

†
!~0!coshsnW tcollapse

1
1

2i

~anW2anW
†
!~0!

qnW
sinhsnW tcollapse, ~B14!

b̄nW5
1

2i
~anW2anW

†
!~0!coshsnW tcollapse

1
1

2
qnW~anW1anW

†
!~0!sinhsnW tcollapse. ~B15!

Using the Wronskian

I 2i tEnW
~z0!

d

dz
I 22i tEnW

~z0!2I 22i tEnW
~z0!

d

dz
I 2i tEnW

~z0!

522i
sinh2ptEnW

pz0
, ~B16!

we get

anW5
ipz0

2sinh2ptEnW
F d

dz
I 22i tEnW

~z0!c̄nW1I 22i tEnW
~z0!

2EnWt

z0
b̄nW G .

~B17!

Call

W~z,z0!5
ipz0

2sinh 2ptEnW
@ I 2i tEnW

~z!I 22i tEnW
~z0!

2I 22i tEnW
~z!I 2i tEnW

~z0!#, ~B18!
04362
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W1~z,z0!5
ipz0

2sinh 2ptEnW
F I 2i tEnW

~z!
d

dz
I 22i tEnW

~z0!

2I 22i tEnW
~z!

d

dz
I 2i tEnW

~z0!G , ~B19!

W2~z,z0!5
d

dz
W~z,z0!, ~B20!

W3~z,z0!5
d

dz
W1~z,z0!. ~B21!

Then

cnW5W1~z,z0!c̄nW1
2EnWt

z0
W~z,z0!b̄nW , ~B22!

bnW5
2z

2EnWt
FW3~z,z0!c̄nW1

2EnWt

z0
W2~z,z0!b̄nW G , ~B23!

c̄nW5
1

2
~ ānW1ānW

†
!; b̄nW5

1

2i
~ ānW2ānW

†
!, ~B24!

anW~ t !5W1~z,z0!c̄nW1
2EnWt

z0
W~z,z0!b̄nW2

i z

2EnWt
FW3~z,z0!c̄nW

1
2EnWt

z0
W2~z,z0!b̄nW G . ~B25!

So, writing

ānW5 f̄ nWanW~0!1ḡnWanW
†
~0!, ~B26!

then

anW~ t !5 f nW~ t !anW~0!1gnW~ t !anW
†
~0!, ~B27!

f nW~ t !5
1

2
W1~z,z0!~ f̄ nW1ḡnW

* !2
iEnWt

z0
W~z,z0!~ f̄ nW2ḡnW

* !

2
i z

4EnWt
W3~z,z0!~ f̄ nW1ḡnW

* !

2
z

2z0
W2~z,z0!~ f̄ nW2ḡnW

* !, ~B28!

gnW~ t !5
1

2
W1~z,z0!~ f̄ nW

* 1ḡnW !1
iEnWt

z0
W~z,z0!~ f̄ nW

* 2ḡnW !

2
i z

4EnWt
W3~z,z0!~ f̄ nW

* 1ḡnW !

1
z

2z0
W2~z,z0!~ f̄ nW

* 2ḡnW !. ~B29!

This result is used to build the plot in Fig. 6.
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